In this note we analyze the long time behavior of a drift-diffusion-Poisson system with a symmetric definite positive diffusion matrix, subject to Dirichlet boundary conditions. This system models the transport of electrons in semiconductor or plasma devices. By using a quadratic relative entropy obtained by keeping the lowest order term of the logarithmic relative entropy, we prove the exponential convergence to the equilibrium.
Dans cette note, nous analysons le comportement en temps long des solutions du système couplé dérive-diffusion-Poisson avec une matrice de diffusion définie positive et soumis à des conditions aux limites de Dirichlet. Ce système modélise le transport de charges dans des dispositifs à semiconducteurs ou à plasmas. En utilisant l'entropie relative développée à l'ordre 2, nous prouvons la convergence exponentielle des solutions vers l'équilibre.
Accepted:
Published online:
Naoufel Ben Abdallah 1; Florian Méhats 1; Nicolas Vauchelet 1
@article{CRMATH_2004__339_10_683_0, author = {Naoufel Ben Abdallah and Florian M\'ehats and Nicolas Vauchelet}, title = {A note on the long time behavior for the {drift-diffusion-Poisson} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {339}, number = {10}, year = {2004}, doi = {10.1016/j.crma.2004.09.025}, language = {en}, }
TY - JOUR AU - Naoufel Ben Abdallah AU - Florian Méhats AU - Nicolas Vauchelet TI - A note on the long time behavior for the drift-diffusion-Poisson system JO - Comptes Rendus. Mathématique PY - 2004 SP - 683 EP - 688 VL - 339 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2004.09.025 LA - en ID - CRMATH_2004__339_10_683_0 ER -
Naoufel Ben Abdallah; Florian Méhats; Nicolas Vauchelet. A note on the long time behavior for the drift-diffusion-Poisson system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 683-688. doi : 10.1016/j.crma.2004.09.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.025/
[1] On generalized Csiszár–Kullback inequalities, Monatsh. Math., Volume 131 (2000) no. 3, pp. 235-253
[2] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100
[3] On large time asymptotics for drift-diffusion-Poisson systems, Transport Theory Statist. Phys., Volume 29 (2000) no. 3–5, pp. 571-581
[4] Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 17 (1994) no. 6, pp. 451-476
[5] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particle: existence, uniqueness and long time behavior, submitted for publication
[6] Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 461-472
[7] Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling, Transport Theory Statist. Phys., Volume 30 (2001) no. 4–6, pp. 521-536
[8] Stationary states in plasma physics: Maxwellian solutions of the Vlasov–Poisson system, Math. Models Methods Appl. Sci., Volume 1 (1991) no. 2, pp. 183-208
[9] On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech., Volume 65 (1985) no. 2, pp. 101-108
[10] Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics, Math. Nachr., Volume 140 (1989), pp. 7-36
[11] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model, European J. Appl. Math., Volume 12 (2001) no. 4, pp. 497-512
[12] Semiconductor Equations, Springer-Verlag, Vienna, 1990
[13] Boundary value problems for the stationary Vlasov–Maxwell systems, Forum Math., Volume 4 (1992), pp. 499-527
Cited by Sources:
* Support by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282, is acknowledged.
Comments - Policy