Comptes Rendus
Partial Differential Equations
A note on the long time behavior for the drift-diffusion-Poisson system
Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 683-688.

In this note we analyze the long time behavior of a drift-diffusion-Poisson system with a symmetric definite positive diffusion matrix, subject to Dirichlet boundary conditions. This system models the transport of electrons in semiconductor or plasma devices. By using a quadratic relative entropy obtained by keeping the lowest order term of the logarithmic relative entropy, we prove the exponential convergence to the equilibrium.

Dans cette note, nous analysons le comportement en temps long des solutions du système couplé dérive-diffusion-Poisson avec une matrice de diffusion définie positive et soumis à des conditions aux limites de Dirichlet. Ce système modélise le transport de charges dans des dispositifs à semiconducteurs ou à plasmas. En utilisant l'entropie relative développée à l'ordre 2, nous prouvons la convergence exponentielle des solutions vers l'équilibre.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.025
Naoufel Ben Abdallah 1; Florian Méhats 1; Nicolas Vauchelet 1

1 Mathématiques pour l'industrie et la physique, UMR 5640, université Paul Sabatier, UFR MIG, 118, route de Narbonne, 31032 Toulouse cedex 4, France
@article{CRMATH_2004__339_10_683_0,
     author = {Naoufel Ben Abdallah and Florian M\'ehats and Nicolas Vauchelet},
     title = {A note on the long time behavior for the {drift-diffusion-Poisson} system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {683--688},
     publisher = {Elsevier},
     volume = {339},
     number = {10},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.025},
     language = {en},
}
TY  - JOUR
AU  - Naoufel Ben Abdallah
AU  - Florian Méhats
AU  - Nicolas Vauchelet
TI  - A note on the long time behavior for the drift-diffusion-Poisson system
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 683
EP  - 688
VL  - 339
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.025
LA  - en
ID  - CRMATH_2004__339_10_683_0
ER  - 
%0 Journal Article
%A Naoufel Ben Abdallah
%A Florian Méhats
%A Nicolas Vauchelet
%T A note on the long time behavior for the drift-diffusion-Poisson system
%J Comptes Rendus. Mathématique
%D 2004
%P 683-688
%V 339
%N 10
%I Elsevier
%R 10.1016/j.crma.2004.09.025
%G en
%F CRMATH_2004__339_10_683_0
Naoufel Ben Abdallah; Florian Méhats; Nicolas Vauchelet. A note on the long time behavior for the drift-diffusion-Poisson system. Comptes Rendus. Mathématique, Volume 339 (2004) no. 10, pp. 683-688. doi : 10.1016/j.crma.2004.09.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.025/

[1] A. Arnold; P. Markowich; G. Toscani; A. Unterreiter On generalized Csiszár–Kullback inequalities, Monatsh. Math., Volume 131 (2000) no. 3, pp. 235-253

[2] A. Arnold; P.A. Markowich; G. Toscani; A. Unterreiter On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100

[3] A. Arnold; P. Markowich; G. Toscani On large time asymptotics for drift-diffusion-Poisson systems, Transport Theory Statist. Phys., Volume 29 (2000) no. 3–5, pp. 571-581

[4] N. Ben Abdallah Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system, Math. Methods Appl. Sci., Volume 17 (1994) no. 6, pp. 451-476

[5] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particle: existence, uniqueness and long time behavior, submitted for publication

[6] P. Biler; J. Dolbeault Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 461-472

[7] P. Biler; J. Dolbeault; P.A. Markowich Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling, Transport Theory Statist. Phys., Volume 30 (2001) no. 4–6, pp. 521-536

[8] J. Dolbeault Stationary states in plasma physics: Maxwellian solutions of the Vlasov–Poisson system, Math. Models Methods Appl. Sci., Volume 1 (1991) no. 2, pp. 183-208

[9] H. Gajewski On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors, Z. Angew. Math. Mech., Volume 65 (1985) no. 2, pp. 101-108

[10] H. Gajewski; K. Gröger Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics, Math. Nachr., Volume 140 (1989), pp. 7-36

[11] I. Gasser; C.D. Levermore; P.A. Markowich; C. Schmeiser The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model, European J. Appl. Math., Volume 12 (2001) no. 4, pp. 497-512

[12] P.A. Markowich; C.A. Ringhofer; C. Schmeiser Semiconductor Equations, Springer-Verlag, Vienna, 1990

[13] F. Poupaud Boundary value problems for the stationary Vlasov–Maxwell systems, Forum Math., Volume 4 (1992), pp. 499-527

Cited by Sources:

* Support by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282, is acknowledged.

Comments - Policy


Articles of potential interest

Analysis of a Drift-Diffusion-Schrödinger–Poisson model

Naoufel Ben Abdallah; Florian Méhats; Nicolas Vauchelet

C. R. Math (2002)


A mathematical model for the transient evolution of a resonant tunneling diode

Naoufel Ben Abdallah; Olivier Pinaud

C. R. Math (2002)