[Quelques caractérisations des espaces de Chebyshev généralisés liées à la notion de floraison.]
Parmi les W-espaces (espaces à Wronskiens sans zéro), les espaces de Chebyshev généralisés se caractérisent par l'existence de bases de Bernstein, ou de points de Bézier, ou de floraisons, ou de bases de B-splines, dans l'espace obtenu par intégration.
Among all W-spaces (i.e. spaces with nonvanishing Wronskians), extended Cheyshev spaces can be characterised by the existence of either Bernstein bases, or B-spline bases, or Bézier points, or blossoms in the spaces obtained by integration.
Accepté le :
Publié le :
Marie-Laurence Mazure 1
@article{CRMATH_2004__339_11_815_0, author = {Marie-Laurence Mazure}, title = {Various characterisations of {Extended} {Chebyshev} spaces via blossoms}, journal = {Comptes Rendus. Math\'ematique}, pages = {815--820}, publisher = {Elsevier}, volume = {339}, number = {11}, year = {2004}, doi = {10.1016/j.crma.2004.09.031}, language = {en}, }
Marie-Laurence Mazure. Various characterisations of Extended Chebyshev spaces via blossoms. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 815-820. doi : 10.1016/j.crma.2004.09.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.031/
[1] Total positivity and optimal bases (M. Gasca; C.A. Micchelli, eds.), Total Positivity and its Applications, Kluwer Academic, 1996, pp. 133-155
[2] Tchebycheff Systems, Wiley Interscience, New York, 1966
[3] B-spline bases and osculating flats: one result of H.-P. Seidel revisited, Math. Model. Numer. Anal., Volume 36 (2002), pp. 1177-1186
[4] Blossoming beyond extended Chebyshev spaces, J. Approx. Theory, Volume 109 (2001), pp. 48-81
[5] Blossoming: a geometrical approach, Constr. Approx., Volume 22 (1999), pp. 285-304
[6] Blossoms and optimal bases, Adv. Comput. Math., Volume 20 (2004), pp. 177-203
[7] M.-L. Mazure, Chebyshev spaces and Bernstein bases, Constr. Approx., in preparation
[8] Tchebycheff curves (M. Gasca; C.A. Micchelli, eds.), Total Positivity and its Applications, Kluwer Academic, 1996, pp. 187-218
[9] The geometry of Tchebycheffian splines, Comput. Aided Geom. Design, Volume 10 (1993), pp. 181-210
[10] Spline Functions, Wiley Interscience, New York, 1981
Cité par Sources :
Commentaires - Politique