We construct cup products of two different kinds for Hopf-cyclic cohomology. When the Hopf algebra reduces to the ground field our first cup product reduces to Connes' cup product in ordinary cyclic cohomology. The second cup product generalizes Connes–Moscovici's characteristic map for actions of Hopf algebras on algebras.
. Nous construisons deux types de cup-produits pour la cohomologie Hopf-cyclique. Lorsque l'algèbre de Hopf se réduit au corps de base, notre premier cup-produit se réduit au cup-produit de Connes en cohomologie cyclique ordinaire. Le deuxième cup-produit généralise l'application caractéristique de Connes–Moscovici pour l'action des algèbres de Hopf sur les algèbres.
Accepted:
Published online:
Masoud Khalkhali 1; Bahram Rangipour 2
@article{CRMATH_2005__340_1_9_0, author = {Masoud Khalkhali and Bahram Rangipour}, title = {Cup products in {Hopf-cyclic} cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {9--14}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.10.025}, language = {en}, }
Masoud Khalkhali; Bahram Rangipour. Cup products in Hopf-cyclic cohomology. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 9-14. doi : 10.1016/j.crma.2004.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.025/
[1] Equivariant cyclic cohomology of H-algebras, K-Theory, Volume 29 (2003) no. 4, pp. 231-252
[2] Noncommutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[3] Cyclic cohomology and the transverse fundamental class of a foliation, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., vol. 123, 1986, pp. 52-144
[4] Hopf algebras, cyclic cohomology and the transverse index theorem, Commun. Math. Phys., Volume 198 (1998) no. 1, pp. 199-246
[5] Cyclic cohomology and Hopf algebras, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 97-108
[6] Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys., Volume 52 (2000) no. 1, pp. 1-28
[7] Secondary characteristic classes and cyclic cohomology of Hopf algebras, Topology, Volume 41 (2002) no. 5, pp. 993-1016
[8] Stable anti-Yetter–Drinfeld modules, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 8, pp. 587-590
[9] Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 338 (2004) no. 9, pp. 667-672
[10] On Cartan homotopy formulas in cyclic homology, Manuscripta Math. 94 (1) (1997), pp. 111-132
[11] A new cyclic module for Hopf algebras, K-Theory, Volume 27 (2002) no. 2, pp. 111-131
Cited by Sources:
Comments - Policy