Let be the -valued process with independent Bessel components and with indices p and q strictly positive. In this paper we compute explicitly the law of the hitting time and place of a circle, centered at the origin, when starts from the center and deduce a Reuter-type independence result. We use mainly analytical tools from PDE theory.
Soit le processus dans ayant deux composantes de Bessel indépendantes et d'indices, respectivement, p et q strictement positifs. Dans cet article, nous trouvons explicitement la loi du temps et place de sortie d'un cercle, centré à l'origine, quand démarre du centre et on déduit un théorème d'indépendance apparenté à celui de Reuter. On utilise principalement des outils analytiques de la théorie des EDP.
Accepted:
Published online:
Abdelkader Ziadi 1; Abdelatif Bencherif-Madani 1
@article{CRMATH_2005__340_3_239_0, author = {Abdelkader Ziadi and Abdelatif Bencherif-Madani}, title = {The harmonic measure and a {Reuter-type} result for a process with {Bessel} components}, journal = {Comptes Rendus. Math\'ematique}, pages = {239--244}, publisher = {Elsevier}, volume = {340}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2004.11.012}, language = {en}, }
TY - JOUR AU - Abdelkader Ziadi AU - Abdelatif Bencherif-Madani TI - The harmonic measure and a Reuter-type result for a process with Bessel components JO - Comptes Rendus. Mathématique PY - 2005 SP - 239 EP - 244 VL - 340 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2004.11.012 LA - en ID - CRMATH_2005__340_3_239_0 ER -
Abdelkader Ziadi; Abdelatif Bencherif-Madani. The harmonic measure and a Reuter-type result for a process with Bessel components. Comptes Rendus. Mathématique, Volume 340 (2005) no. 3, pp. 239-244. doi : 10.1016/j.crma.2004.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.012/
[1] Handbook of Brownian Motion-Facts and Formulae, Birkhäuser, 1996
[2] Beta-Gamma random variables and interwinning relations between certain Markov processes, Rev. Mat. Iberoamericana, Volume 14 (1998) no. 2, pp. 311-366
[3] Some developments in Markov chains, Trans. Amer. Math. Soc., Volume 81 (1956), pp. 195-210
[4] Multiple points for a process in with stable components, Z. Wahrscheinlichkeitstheorie Verw. Geb., Volume 28 (1974), pp. 113-128
[5] Some probability properties of Bessel functions, Ann. Probab., Volume 6 (1978), pp. 760-770
[6] Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, 1971
[7] Diffusions, Markov Processes and Martingales, vol. II, Wiley, 1987
[8] The classical ruin problem with equal fortunes, Math. Mag., Volume 48 (1975), pp. 286-288
[9] An independence in Brownian motion with drift, Ann. Probab., Volume 5 (1977) no. 4, pp. 571-572
[10] Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967
[11] A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1948
[12] Hitting spheres with Brownian motion, Ann. Probab., Volume 8 (1980) no. 1, pp. 164-169
[13] An independence property of Brownian motion with drift, Ann. Probab., Volume 8 (1980) no. 3, pp. 600-601
[14] A. Ziadi, Quelques aspects de la théorie des processus de Bessel, Third cycle doctorate, Lyon 1, France, 1983
Cited by Sources:
Comments - Policy