[Poisson cohomology in dimension three.]
Nous décrivons la cohomologie de Poisson pour des structures de Poisson sur l'espace affine , admettant un Casimir quasi-homogène et un lieu singulier réduit à l'origine.
We describe the Poisson cohomology for Poisson structures on the affine space , which admit a quasi-homogeneous Casimir and a singular locus reduced to the origin.
Accepted:
Published online:
Anne Pichereau 1
@article{CRMATH_2005__340_2_151_0,
author = {Anne Pichereau},
title = {Cohomologie de {Poisson} en dimension trois},
journal = {Comptes Rendus. Math\'ematique},
pages = {151--154},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {2},
doi = {10.1016/j.crma.2004.11.020},
language = {fr},
}
Anne Pichereau. Cohomologie de Poisson en dimension trois. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 151-154. doi: 10.1016/j.crma.2004.11.020
[1] Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom., Volume 12 (1977), pp. 253-300
[2] Poisson cohomology in dimension two, Israel J. Math., Volume 129 (2002), pp. 189-207
[3] Poisson cohomology of the affine plane, J. Algebra, Volume 251 (2002), pp. 448-460
[4] Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Phys., Volume 200 (1999), pp. 545-560
Cited by Sources:
Comments - Policy
