We prove that the minimal sets in the skew-product semiflows generated from a non-autonomous scalar functional differential equation with a small delay are all almost automorphic extensions of the base. This result is not true for arbitrary delay equations. The point is that, for a small delay, so-called special solutions exist and permit us to tackle the problem by means of some related scalar ODE's for which the study is much simpler.
Dans cette Note on montre que les ensembles minimaux pour les semiflots engendrés par les solutions des équations fonctionnelles non-autonomes à petit retard sont des extensions presque automorphes de la base. Ce résultat n'est plus vrai pour un retard arbitraire. C'est la condition sur le retard qui garantit l'existence de solutions dites solutions spéciales. Ces solutions-ci nous permettent de considérer notre problème au moyen d'un autre plus facile relatif aux équations différentielles ordinaires.
Accepted:
Published online:
Ana I. Alonso 1; Rafael Obaya 1; Ana M. Sanz 2
@article{CRMATH_2005__340_2_155_0, author = {Ana I. Alonso and Rafael Obaya and Ana M. Sanz}, title = {A {Note} on non-autonomous scalar functional differential equations with small delay}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--160}, publisher = {Elsevier}, volume = {340}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2004.11.027}, language = {en}, }
TY - JOUR AU - Ana I. Alonso AU - Rafael Obaya AU - Ana M. Sanz TI - A Note on non-autonomous scalar functional differential equations with small delay JO - Comptes Rendus. Mathématique PY - 2005 SP - 155 EP - 160 VL - 340 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2004.11.027 LA - en ID - CRMATH_2005__340_2_155_0 ER -
Ana I. Alonso; Rafael Obaya; Ana M. Sanz. A Note on non-autonomous scalar functional differential equations with small delay. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 155-160. doi : 10.1016/j.crma.2004.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.027/
[1] The structure of the bounded trajectories set of a scalar convex differential equation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 237-263
[2] Linear differential systems with small delays, J. Differential Equations, Volume 21 (1976), pp. 149-167
[3] On almost 1–1 extensions, Israel J. Math., Volume 65 (1989) no. 3, pp. 311-322
[4] A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., Volume 82 (1981) no. 2, pp. 199-205
[5] On almost-periodic linear differential systems of Millionščikov and Vinograd, J. Math. Anal. Appl., Volume 85 (1982), pp. 452-460
[6] Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Positive Feedback, Fields Institute Monograph Series, vol. 11, Amer. Math. Soc., Providence, RI, 1999
[7] Attractor minimal sets for cooperative and strongly convex delay differential systems, J. Differential Equations, Volume 208 (2005), pp. 86-123
[8] S. Novo, R. Obaya, A.M. Sanz, Almost periodic and almost automorphic dynamics for scalar convex differential equations, Israel J. Math., in press
[9] Convergence to equilibria in scalar nonquasimonotone functional differential equations, J. Differential Equations, Volume 193 (2003), pp. 95-130
[10] Almost Automorphic and Almost Periodic Dynamics in Skew-Products Semiflows, Mem. Amer. Math. Soc., vol. 647, Amer. Math. Soc., Providence, RI, 1998
[11] Favard theory, Russian Math. Surveys, Volume 32 (1977), pp. 129-180
Cited by Sources:
Comments - Policy