[Unicité de métriques kählériennes extrémales]
Dans l'espace de dimension infinie des potentiels de Kähler, l'équation géodésique de type disque est une équation de Monge–Ampère complexe homogène. Le résulat de régularité partielle établi dans cette note permet de renforcer le caractère
In the infinite dimensional space of Kähler potentials, the geodesic equation of disc type is a complex homogenous Monge–Ampère equation. The partial regularity theory established by Chen and Tian [C. R. Acad. Sci. Paris, Ser. I 340 (5) (2005)] amounts to an improvement of the regularity of the known
Accepté le :
Publié le :
Xiuxiong Chen 1 ; Gang Tian 1
@article{CRMATH_2005__340_4_287_0, author = {Xiuxiong Chen and Gang Tian}, title = {Uniqueness of extremal {K\"ahler} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--290}, publisher = {Elsevier}, volume = {340}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2004.11.028}, language = {en}, }
Xiuxiong Chen; Gang Tian. Uniqueness of extremal Kähler metrics. Comptes Rendus. Mathématique, Volume 340 (2005) no. 4, pp. 287-290. doi : 10.1016/j.crma.2004.11.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.028/
[1] Uniqueness of Kähler Einstein metrics modulo connected group actions, Algebraic Geometry, Adv. Stud. Pure Math., 1987, pp. 11-40
[2] The Drichelet problem for the complex Monge–Ampere operator, Invent. Math., Volume 37 (1976), pp. 1-44
[3] Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton University Press, 1982, pp. 259-290
[4] Space of Kähler metrics, J. Differential Geom., Volume 56 (2000), pp. 189-234
[5] Partial regularity of homogeneous complex Monge–Ampere equations, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 5
[6] X.X. Chen, G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Preprint, 2004
[7] Holomorphic discs and the complex Monge–Ampere equation, J. Symplectic Geometry, Volume 1 (2002), pp. 171-196
[8] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001), pp. 479-522
[9] Scalar curvature and projective embeddings. II | arXiv
[10] Some Symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227-252
[11] Stability of extremal Kähler manifolds | arXiv
[12] S. Paul, G. Tian, Algebraic and analytic K-stability, Preprint, 2004
[13] Complex Monge–Ampere and sympletic manifolds, Amer. J. Math., Volume 114 (1992), pp. 495-550
[14] Kähler–Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 1-39
[15] Bott–Chern forms and geometric stability, Discrete Contin. Dynam. Systems, Volume 6 (2000), pp. 1-39
[16] Uniqueness of Kähler–Ricci solitons, Acta Math., Volume 184 (2000), pp. 271-305
- Extensions of extremal Kähler submanifolds of complex projective spaces, Annali di Matematica Pura ed Applicata (1923 -), Volume 203 (2024) no. 6, p. 2825 | DOI:10.1007/s10231-024-01468-6
- Extremal Kähler Metrics Induced by Finite or Infinite-Dimensional Complex Space Forms, The Journal of Geometric Analysis, Volume 31 (2021) no. 8, p. 7842 | DOI:10.1007/s12220-020-00554-4
- Constant Scalar Curvature Equation and Regularity of Its Weak Solution, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 2, p. 422 | DOI:10.1002/cpa.21790
- Extremal metrics on toric surfaces, Advances in Mathematics, Volume 340 (2018), p. 363 | DOI:10.1016/j.aim.2018.10.015
- Canonical metrics on generalized Cartan-Hartogs domains, Chinese Annals of Mathematics, Series B, Volume 37 (2016) no. 3, p. 357 | DOI:10.1007/s11401-016-0976-2
- Note on scalar curvature of extremal Kähler metrics on CP2#2CP2¯, Differential Geometry and its Applications, Volume 38 (2015), p. 1 | DOI:10.1016/j.difgeo.2014.11.001
- The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry, Journal of Geometry and Physics, Volume 91 (2015), p. 163 | DOI:10.1016/j.geomphys.2015.01.009
- The Sasaki join and admissible Kähler constructions, Journal of Geometry and Physics, Volume 91 (2015), p. 29 | DOI:10.1016/j.geomphys.2014.10.002
- Extremal Sasakian Geometry on S3-bundles over Riemann Surfaces, International Mathematics Research Notices, Volume 2014 (2014) no. 20, p. 5510 | DOI:10.1093/imrn/rnt139
- CANONICAL METRICS ON CARTAN–HARTOGS DOMAINS, International Journal of Geometric Methods in Modern Physics, Volume 09 (2012) no. 01, p. 1250011 | DOI:10.1142/s0219887812500119
- Hirzebruch Surfaces and Weighted Projective Planes, Riemannian Topology and Geometric Structures on Manifolds (2009), p. 25 | DOI:10.1007/978-0-8176-4743-8_2
- Canonical metrics on some domains of ℂ n, Séminaire de théorie spectrale et géométrie, Volume 27 (2009), p. 143 | DOI:10.5802/tsg.274
- Hamiltonian 2-forms in Kähler geometry, III extremal metrics and stability, Inventiones mathematicae, Volume 173 (2008) no. 3, p. 547 | DOI:10.1007/s00222-008-0126-x
- On conformally Kähler, Einstein manifolds, Journal of the American Mathematical Society, Volume 21 (2008) no. 4, p. 1137 | DOI:10.1090/s0894-0347-08-00594-8
Cité par 14 documents. Sources : Crossref
Commentaires - Politique