[Unicité de métriques kählériennes extrémales]
Dans l'espace de dimension infinie des potentiels de Kähler, l'équation géodésique de type disque est une équation de Monge–Ampère complexe homogène. Le résulat de régularité partielle établi dans cette note permet de renforcer le caractère de la solution obtenue antérieurement en montrant qu'elle est presque partout. On démontre que la K-énergie est sous-harmonique sur une telle solution. On utilise ce résultat pour montrer l'unicité de la métrique de Kähler extrémale et pour établir une borne inférieure pour la K-énergie, quand la classe de Kähler sous-jacente admet une métrique Kählérienne extrémale.
In the infinite dimensional space of Kähler potentials, the geodesic equation of disc type is a complex homogenous Monge–Ampère equation. The partial regularity theory established by Chen and Tian [C. R. Acad. Sci. Paris, Ser. I 340 (5) (2005)] amounts to an improvement of the regularity of the known solution to the geodesic of disc type to almost everywhere smooth. For such an almost smooth solution, we prove that the K-energy functional is sub-harmonic along such a solution. We use this to prove the uniqueness of extremal Kähler metrics and to establish a lower bound for the modified K-energy if the underlying Kähler class admits an extremal Kähler metric.
Accepté le :
Publié le :
Xiuxiong Chen 1 ; Gang Tian 1
@article{CRMATH_2005__340_4_287_0, author = {Xiuxiong Chen and Gang Tian}, title = {Uniqueness of extremal {K\"ahler} metrics}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--290}, publisher = {Elsevier}, volume = {340}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2004.11.028}, language = {en}, }
Xiuxiong Chen; Gang Tian. Uniqueness of extremal Kähler metrics. Comptes Rendus. Mathématique, Volume 340 (2005) no. 4, pp. 287-290. doi : 10.1016/j.crma.2004.11.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.028/
[1] Uniqueness of Kähler Einstein metrics modulo connected group actions, Algebraic Geometry, Adv. Stud. Pure Math., 1987, pp. 11-40
[2] The Drichelet problem for the complex Monge–Ampere operator, Invent. Math., Volume 37 (1976), pp. 1-44
[3] Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton University Press, 1982, pp. 259-290
[4] Space of Kähler metrics, J. Differential Geom., Volume 56 (2000), pp. 189-234
[5] Partial regularity of homogeneous complex Monge–Ampere equations, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 5
[6] X.X. Chen, G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Preprint, 2004
[7] Holomorphic discs and the complex Monge–Ampere equation, J. Symplectic Geometry, Volume 1 (2002), pp. 171-196
[8] Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001), pp. 479-522
[9] Scalar curvature and projective embeddings. II | arXiv
[10] Some Symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227-252
[11] Stability of extremal Kähler manifolds | arXiv
[12] S. Paul, G. Tian, Algebraic and analytic K-stability, Preprint, 2004
[13] Complex Monge–Ampere and sympletic manifolds, Amer. J. Math., Volume 114 (1992), pp. 495-550
[14] Kähler–Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997), pp. 1-39
[15] Bott–Chern forms and geometric stability, Discrete Contin. Dynam. Systems, Volume 6 (2000), pp. 1-39
[16] Uniqueness of Kähler–Ricci solitons, Acta Math., Volume 184 (2000), pp. 271-305
Cité par Sources :
Commentaires - Politique