[Anneaux d'invariants des représentations de carquois]
In this Note we compute the generators of the ring of invariants for quiver factorization problems, generalizing results of Le Bruyn and Procesi. In particular, we find a necessary and sufficient combinatorial criterion for the projectivity of the associated invariant quotients. Further, we show that the non-projective quotients admit open immersions into projective varieties, which still arise from suitable quiver factorization problems.
Dans cette Note nous calculons les générateurs des anneaux d'invariants pour certains problèmes de factorisation associés aux représentations de carquois, généralisant un résultat démontré par Le Bruyn et Procesi. En particulier, nous déduisons un critère combinatoire nécéssaire et suffisant pour la projectivité du quotient. En plus, nous démontrons que les quotients non-projectifs peuvent être immergés de manière ouverte dans varietés projectives qui proviennent elles mêmes de problèmes de factorisation de carquois appropriés.
Accepté le :
Publié le :
Mihai Halic 1 ; Mihai-Sorin Stupariu 1
@article{CRMATH_2005__340_2_135_0, author = {Mihai Halic and Mihai-Sorin Stupariu}, title = {Rings of invariants for representations of quivers}, journal = {Comptes Rendus. Math\'ematique}, pages = {135--140}, publisher = {Elsevier}, volume = {340}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2004.12.012}, language = {en}, }
Mihai Halic; Mihai-Sorin Stupariu. Rings of invariants for representations of quivers. Comptes Rendus. Mathématique, Volume 340 (2005) no. 2, pp. 135-140. doi : 10.1016/j.crma.2004.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.12.012/
[1] Semisimple representations of quivers, Trans. Amer. Math. Soc., Volume 317 (1990), pp. 585-598
[2] Instantons and geometric invariant theory, Commun. Math. Phys., Volume 93 (1984), pp. 453-460
[3] A compactification of the space of rational transfer functions by singular systems, J. Math. Systems Estim. Control, Volume 3 (1993), pp. 459-472
[4] Gauge theoretical Gromov–Witten invariants and virtual fundamental classes (A. Collino et al., eds.), The Fano Conference, Dipartimento di Matematica, Università di Torino, 2004, pp. 591-623
[5] The GIT-equivalence for G-line bundles, Geom. Dedicata, Volume 81 (2000), pp. 295-324
- A quiver approach to studying orbit spaces of linear systems, Systems Control Letters, Volume 73 (2014), p. 1 | DOI:10.1016/j.sysconle.2014.09.001
- Filtrations, weights and quiver problems, Linear Algebra and its Applications, Volume 436 (2012) no. 3, p. 648 | DOI:10.1016/j.laa.2011.07.035
- Quivers, geometric invariant theory, and moduli of linear dynamical systems, Linear Algebra and its Applications, Volume 428 (2008) no. 11-12, p. 2424 | DOI:10.1016/j.laa.2007.11.027
Cité par 3 documents. Sources : Crossref
Commentaires - Politique