Comptes Rendus
Complex Analysis
Green functions with analytic singularities
Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 479-482.

We study properties of a Green function with singularities determined by a closed complex subspace A of a complex manifold X. It is defined as the largest negative plurisubharmonic function u satisfying locally ulog|ψ|+O(1), where ψ=(ψ1,,ψm) with ψ1,,ψm local generators for the ideal sheaf IA of A.

Nous étudions des propriétés d'une fonction de Green avec des singularités determinées par un sous-espace fermé complexe A d'une variété complexe lisse X. Elle est définie comme la plus grande fonction plurisouharmonique u négative vérifiant ulog|ψ|+O(1), où ψ=(ψ1,,ψm) avec ψ1,,ψm générateurs locaux du faisceau d'idéaux IA de A.

Published online:
DOI: 10.1016/j.crma.2005.02.019

Alexander Rashkovskii 1; Ragnar Sigurdsson 2

1 Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
2 Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
     author = {Alexander Rashkovskii and Ragnar Sigurdsson},
     title = {Green functions with analytic singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {479--482},
     publisher = {Elsevier},
     volume = {340},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crma.2005.02.019},
     language = {en},
AU  - Alexander Rashkovskii
AU  - Ragnar Sigurdsson
TI  - Green functions with analytic singularities
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 479
EP  - 482
VL  - 340
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2005.02.019
LA  - en
ID  - CRMATH_2005__340_7_479_0
ER  - 
%0 Journal Article
%A Alexander Rashkovskii
%A Ragnar Sigurdsson
%T Green functions with analytic singularities
%J Comptes Rendus. Mathématique
%D 2005
%P 479-482
%V 340
%N 7
%I Elsevier
%R 10.1016/j.crma.2005.02.019
%G en
%F CRMATH_2005__340_7_479_0
Alexander Rashkovskii; Ragnar Sigurdsson. Green functions with analytic singularities. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 479-482. doi : 10.1016/j.crma.2005.02.019.

[1] E. Bierstone; P. Milman Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997) no. 2, pp. 207-302

[2] J.-P. Demailly Monge–Ampère operators, Lelong numbers and intersection theory (V. Ancona; A. Silva, eds.), Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193

[3] A. Edigarian On the product property of pluricomplex Green functions, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2855-2858

[4] F. Lárusson; R. Sigurdsson Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angev. Math., Volume 501 (1998), pp. 1-39

[5] F. Lárusson; R. Sigurdsson Plurisubharmonic extremal functions, Lelong numbers and coherent ideal sheaves, Indiana U. Math. J., Volume 48 (1999), pp. 1513-1534

[6] F. Lárusson; R. Sigurdsson Plurisubharmonicty of envelopes of disc functionals on manifolds, J. Reine Angew. Math., Volume 555 (2003), pp. 27-38

[7] P. Lelong Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach, J. Math. Pures Appl., Volume 68 (1989), pp. 319-347

[8] P. Lelong; A. Rashkovskii Local indicators for plurisubharmonic functions, J. Math. Pures Appl., Volume 78 (1999), pp. 233-247

[9] A. Rashkovskii Maximal plurisubharmonic functions associated to holomorphic mappings, Indiana U. Math. J., Volume 47 (1998), pp. 297-309

Cited by Sources:

Comments - Policy