[Sur la rigidité des cônes-variétés hyperboliques]
Partant d'une cône-variété hyperbolique de dimension
Starting with a compact hyperbolic cone-manifold of dimension
Accepté le :
Publié le :
Grégoire Montcouquiol 1
@article{CRMATH_2005__340_9_677_0, author = {Gr\'egoire Montcouquiol}, title = {On the rigidity of hyperbolic cone-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {340}, number = {9}, year = {2005}, doi = {10.1016/j.crma.2005.03.019}, language = {en}, }
Grégoire Montcouquiol. On the rigidity of hyperbolic cone-manifolds. Comptes Rendus. Mathématique, Volume 340 (2005) no. 9, pp. 677-682. doi : 10.1016/j.crma.2005.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.019/
[1] Einstein Manifolds, Springer-Verlag, Berlin, 1987
[2] Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001) no. 1, pp. 57-62
[3] On the density of geometrically finite Kleinian groups, Acta Math., Volume 192 (2004) no. 1, pp. 33-93
[4] On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. XXXVI, Amer. Math. Soc., Providence, RI, 1980, pp. 91-146
[5] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom., Volume 48 (1998), pp. 1-59
[6] A decomposition of the space of Riemannian metrics on a manifold, Osaka J. Math., Volume 16 (1979), pp. 423-429
Cité par Sources :
Commentaires - Politique