[La géométrie spectrale de la sphère « équatoriale » de Podleś]
Nous présentons une version légèrement modifiée des axiomes de la géométrie spectrale (réelle) au sens de Connes, qui permettent aux relations algébriques d'être satisfaites modulo les opérateurs compacts. Nous montrons que la sphère quantique « équatoriale » de Podleś est une géométrie spectrale et nous déterminons l'opérateur de Dirac et la structure réelle correspondante.
We propose a slight modification of the properties of a spectral geometry à la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podleś sphere we construct
Accepté le :
Publié le :
Ludwik Da̧browski 1 ; Giovanni Landi 2 ; Mario Paschke 3 ; Andrzej Sitarz 4
@article{CRMATH_2005__340_11_819_0, author = {Ludwik Da̧browski and Giovanni Landi and Mario Paschke and Andrzej Sitarz}, title = {The spectral geometry of the equatorial {Podle\'s} sphere}, journal = {Comptes Rendus. Math\'ematique}, pages = {819--822}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.003}, language = {en}, }
TY - JOUR AU - Ludwik Da̧browski AU - Giovanni Landi AU - Mario Paschke AU - Andrzej Sitarz TI - The spectral geometry of the equatorial Podleś sphere JO - Comptes Rendus. Mathématique PY - 2005 SP - 819 EP - 822 VL - 340 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2005.04.003 LA - en ID - CRMATH_2005__340_11_819_0 ER -
Ludwik Da̧browski; Giovanni Landi; Mario Paschke; Andrzej Sitarz. The spectral geometry of the equatorial Podleś sphere. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 819-822. doi : 10.1016/j.crma.2005.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.003/
[1] Quantum geometry of algebra factorisations and coalgebra bundles, Commun. Math. Phys., Volume 213 (2000), pp. 491-521
[2] Equivariant spectral triples on the quantum
[3] Gravity coupled with matter and the foundation of noncommutative geometry, Comm. Math. Phys., Volume 182 (1996), pp. 155-176
[4] Cyclic cohomology, quantum group symmetries and the local index formula for
[5] Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys., Volume 221 (2001), pp. 141-159
[6] L. Da̧browski, G. Landi, A. Sitarz, W. van Suijlekom, J.C. Varilly, The Dirac operator on
[7] Dirac operator on the standard Podles quantum sphere, Banach Center Publ., Volume 61 (2003), pp. 49-58
[8] Dirac operators on quantum flag manifolds, Lett. Math. Phys., Volume 67 (2004), pp. 49-59
[9] G. Landi, M. Paschke, A. Sitarz, unpublished notes, 1999
[10] Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995
[11] A local index formula for the quantum sphere | arXiv
[12] M. Paschke, Über nichtkommutative Geometrien, ihre Symmetrien und etwas Hochenergiephysik, Thesis, Mainz, 2001
[13] Quantum spheres, Lett. Math. Phys., Volume 14 (1987), pp. 521-531
[14] Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere | arXiv
[15] Operator representation of cross product algebras of Podles quantum spheres | arXiv
[16] Equivariant spectral triples, Banach Center Publ., Volume 61 (2003), pp. 231-263
- Understanding truncated non-commutative geometries through computer simulations, Journal of Mathematical Physics, Volume 61 (2020) no. 3 | DOI:10.1063/1.5131864
- Spectral dimensions and dimension spectra of quantum spacetimes, Physical Review D, Volume 102 (2020) no. 8 | DOI:10.1103/physrevd.102.086003
- Differentials on an Algebra, Quantum Riemannian Geometry, Volume 355 (2020), p. 1 | DOI:10.1007/978-3-030-30294-8_1
- Vector Bundles and Connections, Quantum Riemannian Geometry, Volume 355 (2020), p. 207 | DOI:10.1007/978-3-030-30294-8_3
- Curvature, Cohomology and Sheaves, Quantum Riemannian Geometry, Volume 355 (2020), p. 293 | DOI:10.1007/978-3-030-30294-8_4
- Quantum Principal Bundles and Framings, Quantum Riemannian Geometry, Volume 355 (2020), p. 385 | DOI:10.1007/978-3-030-30294-8_5
- Vector Fields and Differential Operators, Quantum Riemannian Geometry, Volume 355 (2020), p. 485 | DOI:10.1007/978-3-030-30294-8_6
- Quantum Complex Structures, Quantum Riemannian Geometry, Volume 355 (2020), p. 527 | DOI:10.1007/978-3-030-30294-8_7
- Quantum Riemannian Structures, Quantum Riemannian Geometry, Volume 355 (2020), p. 565 | DOI:10.1007/978-3-030-30294-8_8
- Quantum Spacetime, Quantum Riemannian Geometry, Volume 355 (2020), p. 653 | DOI:10.1007/978-3-030-30294-8_9
- Hopf Algebras and Their Bicovariant Calculi, Quantum Riemannian Geometry, Volume 355 (2020), p. 83 | DOI:10.1007/978-3-030-30294-8_2
- Operator algebras in India in the past decade, Indian Journal of Pure and Applied Mathematics, Volume 50 (2019) no. 3, p. 801 | DOI:10.1007/s13226-019-0356-1
- The Dwelling of the Spectral Action, Spectral Action in Noncommutative Geometry, Volume 27 (2018), p. 1 | DOI:10.1007/978-3-319-94788-4_1
- Localizing gauge theories from noncommutative geometry, Advances in Mathematics, Volume 290 (2016), p. 682 | DOI:10.1016/j.aim.2015.11.047
- On Twisting Real Spectral Triples by Algebra Automorphisms, Letters in Mathematical Physics, Volume 106 (2016) no. 11, p. 1499 | DOI:10.1007/s11005-016-0880-4
- Classical and Noncommutative Geometry, Quantum Isometry Groups (2016), p. 37 | DOI:10.1007/978-81-322-3667-2_2
- Asymptotic and Exact Expansions of Heat Traces, Mathematical Physics, Analysis and Geometry, Volume 18 (2015) no. 1 | DOI:10.1007/s11040-015-9197-2
- Inner fluctuations in noncommutative geometry without the first order condition, Journal of Geometry and Physics, Volume 73 (2013), p. 222 | DOI:10.1016/j.geomphys.2013.06.006
- Beyond the spectral standard model: emergence of Pati-Salam unification, Journal of High Energy Physics, Volume 2013 (2013) no. 11 | DOI:10.1007/jhep11(2013)132
- Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model, Communications in Mathematical Physics, Volume 307 (2011) no. 1, p. 101 | DOI:10.1007/s00220-011-1301-2
- Quantum isometry groups of noncommutative manifolds associated to groupC∗-algebras, Journal of Geometry and Physics, Volume 60 (2010) no. 10, p. 1474 | DOI:10.1016/j.geomphys.2010.05.007
- THE 3D SPIN GEOMETRY OF THE QUANTUM TWO-SPHERE, Reviews in Mathematical Physics, Volume 22 (2010) no. 08, p. 963 | DOI:10.1142/s0129055x10004119
- Compact quantum metric spaces and ergodic actions of compact quantum groups, Journal of Functional Analysis, Volume 256 (2009) no. 10, p. 3368 | DOI:10.1016/j.jfa.2008.09.009
- Quasi-Dirac operators and quasi-fermions, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 15, p. 155201 | DOI:10.1088/1751-8113/42/15/155201
- Noncommutative Manifolds and Quantum Groups, New Trends in Mathematical Physics (2009), p. 433 | DOI:10.1007/978-90-481-2810-5_30
- The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere, Communications in Mathematical Physics, Volume 279 (2008) no. 1, p. 77 | DOI:10.1007/s00220-008-0420-x
- Elements of noncommutative geometry, Handbook of Global Analysis (2008), p. 905 | DOI:10.1016/b978-044452833-9.50018-8
- Twisted Dirac operators over quantum spheres, Journal of Mathematical Physics, Volume 49 (2008) no. 3 | DOI:10.1063/1.2842067
- THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM PROJECTIVE PLANE, Reviews in Mathematical Physics, Volume 20 (2008) no. 08, p. 979 | DOI:10.1142/s0129055x08003493
- The Dirac Operator on SUq(2), Communications in Mathematical Physics, Volume 259 (2005) no. 3, p. 729 | DOI:10.1007/s00220-005-1383-9
Cité par 30 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier