Comptes Rendus
Geometry/Mathematical Physics
The spectral geometry of the equatorial Podleś sphere
[La géométrie spectrale de la sphère « équatoriale » de Podleś]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 819-822.

Nous présentons une version légèrement modifiée des axiomes de la géométrie spectrale (réelle) au sens de Connes, qui permettent aux relations algébriques d'être satisfaites modulo les opérateurs compacts. Nous montrons que la sphère quantique « équatoriale » de Podleś est une géométrie spectrale et nous déterminons l'opérateur de Dirac et la structure réelle correspondante.

We propose a slight modification of the properties of a spectral geometry à la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podleś sphere we construct Uq(su(2))-equivariant Dirac operator and real structure which satisfy these modified properties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.003

Ludwik Da̧browski 1 ; Giovanni Landi 2 ; Mario Paschke 3 ; Andrzej Sitarz 4

1 Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34014, Trieste, Italy
2 Dipartimento di Matematica e Informatica, Università di Trieste via A. Valerio 12/1, 34127, Trieste, Italy
3 Max-Planck-Institut für Mathematik in den Naturwissenschaften, 04103 Leipzig, Germany
4 Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
@article{CRMATH_2005__340_11_819_0,
     author = {Ludwik Da̧browski and Giovanni Landi and Mario Paschke and Andrzej Sitarz},
     title = {The spectral geometry of the equatorial {Podle\'s} sphere},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--822},
     publisher = {Elsevier},
     volume = {340},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.003},
     language = {en},
}
TY  - JOUR
AU  - Ludwik Da̧browski
AU  - Giovanni Landi
AU  - Mario Paschke
AU  - Andrzej Sitarz
TI  - The spectral geometry of the equatorial Podleś sphere
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 819
EP  - 822
VL  - 340
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.003
LA  - en
ID  - CRMATH_2005__340_11_819_0
ER  - 
%0 Journal Article
%A Ludwik Da̧browski
%A Giovanni Landi
%A Mario Paschke
%A Andrzej Sitarz
%T The spectral geometry of the equatorial Podleś sphere
%J Comptes Rendus. Mathématique
%D 2005
%P 819-822
%V 340
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.04.003
%G en
%F CRMATH_2005__340_11_819_0
Ludwik Da̧browski; Giovanni Landi; Mario Paschke; Andrzej Sitarz. The spectral geometry of the equatorial Podleś sphere. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 819-822. doi : 10.1016/j.crma.2005.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.003/

[1] T. Brzezinski; S. Majid Quantum geometry of algebra factorisations and coalgebra bundles, Commun. Math. Phys., Volume 213 (2000), pp. 491-521

[2] P.S. Chakraborty; A. Pal Equivariant spectral triples on the quantum SU(2) group, K-Theory, Volume 28 (2003), pp. 107-126

[3] A. Connes Gravity coupled with matter and the foundation of noncommutative geometry, Comm. Math. Phys., Volume 182 (1996), pp. 155-176

[4] A. Connes Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2), J. Inst. Math. Jussieu, Volume 3 (2004), pp. 17-68

[5] A. Connes; G. Landi Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys., Volume 221 (2001), pp. 141-159

[6] L. Da̧browski, G. Landi, A. Sitarz, W. van Suijlekom, J.C. Varilly, The Dirac operator on SUq(2), Comm. Math. Phys., in press

[7] L. Da̧browski; A. Sitarz Dirac operator on the standard Podles quantum sphere, Banach Center Publ., Volume 61 (2003), pp. 49-58

[8] U. Krähmer Dirac operators on quantum flag manifolds, Lett. Math. Phys., Volume 67 (2004), pp. 49-59

[9] G. Landi, M. Paschke, A. Sitarz, unpublished notes, 1999

[10] S. Majid Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995

[11] S. Neshveyev; L. Tuset A local index formula for the quantum sphere | arXiv

[12] M. Paschke, Über nichtkommutative Geometrien, ihre Symmetrien und etwas Hochenergiephysik, Thesis, Mainz, 2001

[13] P. Podleś Quantum spheres, Lett. Math. Phys., Volume 14 (1987), pp. 521-531

[14] K. Schmüdgen; E. Wagner Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere | arXiv

[15] K. Schmüdgen; E. Wagner Operator representation of cross product algebras of Podles quantum spheres | arXiv

[16] A. Sitarz Equivariant spectral triples, Banach Center Publ., Volume 61 (2003), pp. 231-263

Cité par Sources :

Commentaires - Politique