Comptes Rendus
Geometry/Mathematical Physics
The spectral geometry of the equatorial Podleś sphere
[La géométrie spectrale de la sphère « équatoriale » de Podleś]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 819-822.

Nous présentons une version légèrement modifiée des axiomes de la géométrie spectrale (réelle) au sens de Connes, qui permettent aux relations algébriques d'être satisfaites modulo les opérateurs compacts. Nous montrons que la sphère quantique « équatoriale » de Podleś est une géométrie spectrale et nous déterminons l'opérateur de Dirac et la structure réelle correspondante.

We propose a slight modification of the properties of a spectral geometry à la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podleś sphere we construct Uq(su(2))-equivariant Dirac operator and real structure which satisfy these modified properties.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.003

Ludwik Da̧browski 1 ; Giovanni Landi 2 ; Mario Paschke 3 ; Andrzej Sitarz 4

1 Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34014, Trieste, Italy
2 Dipartimento di Matematica e Informatica, Università di Trieste via A. Valerio 12/1, 34127, Trieste, Italy
3 Max-Planck-Institut für Mathematik in den Naturwissenschaften, 04103 Leipzig, Germany
4 Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
@article{CRMATH_2005__340_11_819_0,
     author = {Ludwik Da̧browski and Giovanni Landi and Mario Paschke and Andrzej Sitarz},
     title = {The spectral geometry of the equatorial {Podle\'s} sphere},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--822},
     publisher = {Elsevier},
     volume = {340},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.003},
     language = {en},
}
TY  - JOUR
AU  - Ludwik Da̧browski
AU  - Giovanni Landi
AU  - Mario Paschke
AU  - Andrzej Sitarz
TI  - The spectral geometry of the equatorial Podleś sphere
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 819
EP  - 822
VL  - 340
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.003
LA  - en
ID  - CRMATH_2005__340_11_819_0
ER  - 
%0 Journal Article
%A Ludwik Da̧browski
%A Giovanni Landi
%A Mario Paschke
%A Andrzej Sitarz
%T The spectral geometry of the equatorial Podleś sphere
%J Comptes Rendus. Mathématique
%D 2005
%P 819-822
%V 340
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.04.003
%G en
%F CRMATH_2005__340_11_819_0
Ludwik Da̧browski; Giovanni Landi; Mario Paschke; Andrzej Sitarz. The spectral geometry of the equatorial Podleś sphere. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 819-822. doi : 10.1016/j.crma.2005.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.003/

[1] T. Brzezinski; S. Majid Quantum geometry of algebra factorisations and coalgebra bundles, Commun. Math. Phys., Volume 213 (2000), pp. 491-521

[2] P.S. Chakraborty; A. Pal Equivariant spectral triples on the quantum SU(2) group, K-Theory, Volume 28 (2003), pp. 107-126

[3] A. Connes Gravity coupled with matter and the foundation of noncommutative geometry, Comm. Math. Phys., Volume 182 (1996), pp. 155-176

[4] A. Connes Cyclic cohomology, quantum group symmetries and the local index formula for SUq(2), J. Inst. Math. Jussieu, Volume 3 (2004), pp. 17-68

[5] A. Connes; G. Landi Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys., Volume 221 (2001), pp. 141-159

[6] L. Da̧browski, G. Landi, A. Sitarz, W. van Suijlekom, J.C. Varilly, The Dirac operator on SUq(2), Comm. Math. Phys., in press

[7] L. Da̧browski; A. Sitarz Dirac operator on the standard Podles quantum sphere, Banach Center Publ., Volume 61 (2003), pp. 49-58

[8] U. Krähmer Dirac operators on quantum flag manifolds, Lett. Math. Phys., Volume 67 (2004), pp. 49-59

[9] G. Landi, M. Paschke, A. Sitarz, unpublished notes, 1999

[10] S. Majid Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995

[11] S. Neshveyev; L. Tuset A local index formula for the quantum sphere | arXiv

[12] M. Paschke, Über nichtkommutative Geometrien, ihre Symmetrien und etwas Hochenergiephysik, Thesis, Mainz, 2001

[13] P. Podleś Quantum spheres, Lett. Math. Phys., Volume 14 (1987), pp. 521-531

[14] K. Schmüdgen; E. Wagner Dirac operator and a twisted cyclic cocycle on the standard Podles quantum sphere | arXiv

[15] K. Schmüdgen; E. Wagner Operator representation of cross product algebras of Podles quantum spheres | arXiv

[16] A. Sitarz Equivariant spectral triples, Banach Center Publ., Volume 61 (2003), pp. 231-263

  • L. Glaser; A. B. Stern Understanding truncated non-commutative geometries through computer simulations, Journal of Mathematical Physics, Volume 61 (2020) no. 3 | DOI:10.1063/1.5131864
  • Michał Eckstein; Tomasz Trześniewski Spectral dimensions and dimension spectra of quantum spacetimes, Physical Review D, Volume 102 (2020) no. 8 | DOI:10.1103/physrevd.102.086003
  • Edwin J. Beggs; Shahn Majid Differentials on an Algebra, Quantum Riemannian Geometry, Volume 355 (2020), p. 1 | DOI:10.1007/978-3-030-30294-8_1
  • Edwin J. Beggs; Shahn Majid Vector Bundles and Connections, Quantum Riemannian Geometry, Volume 355 (2020), p. 207 | DOI:10.1007/978-3-030-30294-8_3
  • Edwin J. Beggs; Shahn Majid Curvature, Cohomology and Sheaves, Quantum Riemannian Geometry, Volume 355 (2020), p. 293 | DOI:10.1007/978-3-030-30294-8_4
  • Edwin J. Beggs; Shahn Majid Quantum Principal Bundles and Framings, Quantum Riemannian Geometry, Volume 355 (2020), p. 385 | DOI:10.1007/978-3-030-30294-8_5
  • Edwin J. Beggs; Shahn Majid Vector Fields and Differential Operators, Quantum Riemannian Geometry, Volume 355 (2020), p. 485 | DOI:10.1007/978-3-030-30294-8_6
  • Edwin J. Beggs; Shahn Majid Quantum Complex Structures, Quantum Riemannian Geometry, Volume 355 (2020), p. 527 | DOI:10.1007/978-3-030-30294-8_7
  • Edwin J. Beggs; Shahn Majid Quantum Riemannian Structures, Quantum Riemannian Geometry, Volume 355 (2020), p. 565 | DOI:10.1007/978-3-030-30294-8_8
  • Edwin J. Beggs; Shahn Majid Quantum Spacetime, Quantum Riemannian Geometry, Volume 355 (2020), p. 653 | DOI:10.1007/978-3-030-30294-8_9
  • Edwin J. Beggs; Shahn Majid Hopf Algebras and Their Bicovariant Calculi, Quantum Riemannian Geometry, Volume 355 (2020), p. 83 | DOI:10.1007/978-3-030-30294-8_2
  • V. S. Sunder Operator algebras in India in the past decade, Indian Journal of Pure and Applied Mathematics, Volume 50 (2019) no. 3, p. 801 | DOI:10.1007/s13226-019-0356-1
  • Michał Eckstein; Bruno Iochum The Dwelling of the Spectral Action, Spectral Action in Noncommutative Geometry, Volume 27 (2018), p. 1 | DOI:10.1007/978-3-319-94788-4_1
  • Walter D. van Suijlekom Localizing gauge theories from noncommutative geometry, Advances in Mathematics, Volume 290 (2016), p. 682 | DOI:10.1016/j.aim.2015.11.047
  • Giovanni Landi; Pierre Martinetti On Twisting Real Spectral Triples by Algebra Automorphisms, Letters in Mathematical Physics, Volume 106 (2016) no. 11, p. 1499 | DOI:10.1007/s11005-016-0880-4
  • Debashish Goswami; Jyotishman Bhowmick Classical and Noncommutative Geometry, Quantum Isometry Groups (2016), p. 37 | DOI:10.1007/978-81-322-3667-2_2
  • Michał Eckstein; Artur Zając Asymptotic and Exact Expansions of Heat Traces, Mathematical Physics, Analysis and Geometry, Volume 18 (2015) no. 1 | DOI:10.1007/s11040-015-9197-2
  • Ali H. Chamseddine; Alain Connes; Walter D. van Suijlekom Inner fluctuations in noncommutative geometry without the first order condition, Journal of Geometry and Physics, Volume 73 (2013), p. 222 | DOI:10.1016/j.geomphys.2013.06.006
  • Ali H. Chamseddine; Alain Connes; Walter D. van Suijlekom Beyond the spectral standard model: emergence of Pati-Salam unification, Journal of High Energy Physics, Volume 2013 (2013) no. 11 | DOI:10.1007/jhep11(2013)132
  • Jyotishman Bhowmick; Francesco D’Andrea; Ludwik Dąbrowski Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model, Communications in Mathematical Physics, Volume 307 (2011) no. 1, p. 101 | DOI:10.1007/s00220-011-1301-2
  • Jyotishman Bhowmick; Adam Skalski Quantum isometry groups of noncommutative manifolds associated to groupC∗-algebras, Journal of Geometry and Physics, Volume 60 (2010) no. 10, p. 1474 | DOI:10.1016/j.geomphys.2010.05.007
  • SIMON BRAIN; GIOVANNI LANDI THE 3D SPIN GEOMETRY OF THE QUANTUM TWO-SPHERE, Reviews in Mathematical Physics, Volume 22 (2010) no. 08, p. 963 | DOI:10.1142/s0129055x10004119
  • Hanfeng Li Compact quantum metric spaces and ergodic actions of compact quantum groups, Journal of Functional Analysis, Volume 256 (2009) no. 10, p. 3368 | DOI:10.1016/j.jfa.2008.09.009
  • Andrzej Sitarz Quasi-Dirac operators and quasi-fermions, Journal of Physics A: Mathematical and Theoretical, Volume 42 (2009) no. 15, p. 155201 | DOI:10.1088/1751-8113/42/15/155201
  • Giovanni Landi Noncommutative Manifolds and Quantum Groups, New Trends in Mathematical Physics (2009), p. 433 | DOI:10.1007/978-90-481-2810-5_30
  • Francesco D’Andrea; Ludwik Da̧browski; Giovanni Landi The Isospectral Dirac Operator on the 4-dimensional Orthogonal Quantum Sphere, Communications in Mathematical Physics, Volume 279 (2008) no. 1, p. 77 | DOI:10.1007/s00220-008-0420-x
  • Giovanni Landi Elements of noncommutative geometry, Handbook of Global Analysis (2008), p. 905 | DOI:10.1016/b978-044452833-9.50018-8
  • Andrzej Sitarz Twisted Dirac operators over quantum spheres, Journal of Mathematical Physics, Volume 49 (2008) no. 3 | DOI:10.1063/1.2842067
  • FRANCESCO D'ANDREA; LUDWIK DABROWSKI; GIOVANNI LANDI THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM PROJECTIVE PLANE, Reviews in Mathematical Physics, Volume 20 (2008) no. 08, p. 979 | DOI:10.1142/s0129055x08003493
  • Ludwik Dabrowski; Giovanni Landi; Andrzej Sitarz; Walter van Suijlekom; Joseph C. Várilly The Dirac Operator on SUq(2), Communications in Mathematical Physics, Volume 259 (2005) no. 3, p. 729 | DOI:10.1007/s00220-005-1383-9

Cité par 30 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: