We establish a new estimate for the topological degree of continuous maps from the sphere into itself, which answers a question raised in Bourgain, Brezis, and Mironescu [Commun. Pure Appl. Math. 58 (2005) 529–551] and extends some of the results proved there, as well as in recent work by these authors (Lifting, degree, and distributional Jacobian revisited, http://ann.jussieu.fr/publications).
Nous présentons une nouvelle estimée du degré topologique pour des applications continues de la sphère dans elle-même. Celle-ci répond à une question posée dans Bourgain, Brezis, et Mironescu [Commun. Pure Appl. Math. 58 (2005) 529–551] et généralise certains résultats de cet article ainsi que du travail récent de ces auteurs (Lifting, degree, and distributional Jacobian revisited, http://ann.jussieu.fr/publications).
Published online:
Jean Bourgain 1; Haïm Brezis 2, 3; Hoai-Minh Nguyen 2
@article{CRMATH_2005__340_11_787_0, author = {Jean Bourgain and Ha{\"\i}m Brezis and Hoai-Minh Nguyen}, title = {A new estimate for the topological degree}, journal = {Comptes Rendus. Math\'ematique}, pages = {787--791}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.007}, language = {en}, }
Jean Bourgain; Haïm Brezis; Hoai-Minh Nguyen. A new estimate for the topological degree. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 787-791. doi : 10.1016/j.crma.2005.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.007/
[1] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005), pp. 529-551
[2] Complements to the paper: “Lifting, degree, and distributional Jacobian revisited” http://ann.jussieu.fr/publications (to be posted on the website)
[3] H.-M. Nguyen, Optimal constant in a new estimate for the degree, submitted for publication
Cited by Sources:
Comments - Policy