We extend the phenomenon discovered by Piatetski-Shapiro (1954) to spaces. To be precise, for any we construct a compact K on the circle, which supports a distribution S with Fourier transform , but does not support such a measure.
Nous étendons aux espaces le phénomène découvert par Piatetski-Shapiro en 1954 : pour tout nous construisons un compact K sur le cercle, qui porte une distribution dont la transformée de Fourier appartient à , mais qui ne porte pas de mesure ayant cette propriété.
Accepted:
Published online:
Nir Lev 1; Alexander Olevskii 1
@article{CRMATH_2005__340_11_793_0, author = {Nir Lev and Alexander Olevskii}, title = {Piatetski-Shapiro phenomenon in the uniqueness problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {793--798}, publisher = {Elsevier}, volume = {340}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.04.031}, language = {en}, }
Nir Lev; Alexander Olevskii. Piatetski-Shapiro phenomenon in the uniqueness problem. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 793-798. doi : 10.1016/j.crma.2005.04.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.031/
[1] A Treatise on Trigonometric Series, vol. II, Pergamon Press, 1964
[2] Ensembles parfaits et séries trigonométriques, Hermann, 1994
[3] M-sets and distributions, Asterisque, Volume 5 (1973), pp. 225-230
[4] Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge University Press, 1987
[5] A pseudofunctions on a Helson set, I, Asterisque, Volume 5 (1973), pp. 3-224
[6] A pseudofunctions on a Helson set, II, Asterisque, Volume 5 (1973), pp. 231-239
[7] Sums of Independent Random Variables, Springer, 1975
[8] Supplement to the work “On the problem of uniqueness of expansion of a function in a trigonometric series”, Moskov. Gos. Univ. Uč. Zap. Mat. (AMS Collected Works), Volume 165 (1954) no. 7, pp. 79-97 (in Russian); English translation in Selected Works of Ilya Piatetski-Shapiro, vol. 15, 2000
Cited by Sources:
Comments - Policy