Comptes Rendus
Mathematical Analysis
Piatetski-Shapiro phenomenon in the uniqueness problem
[Phénomène de Piatetski-Shapiro et le problème d'unicité]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 793-798.

Nous étendons aux espaces lq le phénomène découvert par Piatetski-Shapiro en 1954 : pour tout q>2 nous construisons un compact K sur le cercle, qui porte une distribution dont la transformée de Fourier appartient à lq, mais qui ne porte pas de mesure ayant cette propriété.

We extend the phenomenon discovered by Piatetski-Shapiro (1954) to lq spaces. To be precise, for any q>2 we construct a compact K on the circle, which supports a distribution S with Fourier transform Sˆlq, but does not support such a measure.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.031

Nir Lev 1 ; Alexander Olevskii 1

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
@article{CRMATH_2005__340_11_793_0,
     author = {Nir Lev and Alexander Olevskii},
     title = {Piatetski-Shapiro phenomenon in the uniqueness problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {793--798},
     publisher = {Elsevier},
     volume = {340},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.031},
     language = {en},
}
TY  - JOUR
AU  - Nir Lev
AU  - Alexander Olevskii
TI  - Piatetski-Shapiro phenomenon in the uniqueness problem
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 793
EP  - 798
VL  - 340
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.031
LA  - en
ID  - CRMATH_2005__340_11_793_0
ER  - 
%0 Journal Article
%A Nir Lev
%A Alexander Olevskii
%T Piatetski-Shapiro phenomenon in the uniqueness problem
%J Comptes Rendus. Mathématique
%D 2005
%P 793-798
%V 340
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.04.031
%G en
%F CRMATH_2005__340_11_793_0
Nir Lev; Alexander Olevskii. Piatetski-Shapiro phenomenon in the uniqueness problem. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 793-798. doi : 10.1016/j.crma.2005.04.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.031/

[1] N.K. Bary A Treatise on Trigonometric Series, vol. II, Pergamon Press, 1964

[2] J.-P. Kahane; R. Salem Ensembles parfaits et séries trigonométriques, Hermann, 1994

[3] R. Kaufman M-sets and distributions, Asterisque, Volume 5 (1973), pp. 225-230

[4] A.S. Kechris; A. Louveau Descriptive Set Theory and the Structure of Sets of Uniqueness, Cambridge University Press, 1987

[5] T.W. Körner A pseudofunctions on a Helson set, I, Asterisque, Volume 5 (1973), pp. 3-224

[6] T.W. Körner A pseudofunctions on a Helson set, II, Asterisque, Volume 5 (1973), pp. 231-239

[7] V.V. Petrov Sums of Independent Random Variables, Springer, 1975

[8] I.I. Pyateckiı̆-Šapiro Supplement to the work “On the problem of uniqueness of expansion of a function in a trigonometric series”, Moskov. Gos. Univ. Uč. Zap. Mat. (AMS Collected Works), Volume 165 (1954) no. 7, pp. 79-97 (in Russian); English translation in Selected Works of Ilya Piatetski-Shapiro, vol. 15, 2000

  • Karim Kellay; Florian Le Manach; Mohamed Zarrabi Spans of translates in weighted p spaces, Revista Matemática Iberoamericana, Volume 39 (2023) no. 5, pp. 1925-1946 | DOI:10.4171/rmi/1414 | Zbl:7755949
  • Nir Lev; Alexander Olevskii Wiener's `closure of translates' problem and Piatetski-Shapiro's uniqueness phenomenon, Annals of Mathematics. Second Series, Volume 174 (2011) no. 1, pp. 519-541 | DOI:10.4007/annals.2011.174.1.15 | Zbl:1231.42003
  • Nir Lev; Alexander Olevskii No characterization of generators in p \((1, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 11-12, pp. 645-648 | DOI:10.1016/j.crma.2008.04.017 | Zbl:1155.46015

Cité par 3 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: