[Lower bounds of the splitting of the invariant manifolds]
Soit m un entier ⩾3, on pose pour , et on considère un vecteur mal approché par les rationnels (au sens de l'approximation simultanée). Fixons , et . Nous construisons une suite de Hamiltoniens de classe sur , qui converge vers ℏ lorsque , tels que le système engendré par laisse invariant un tore hyperbolique de vecteur fréquence fixe , qui admet un point homocline en lequel la matrice d'écart des variétés invariantes est de la forme , avec , où et .
Let m be an integer ⩾3, set for , and consider a badly approximable vector . Fix , and . We construct a sequence of Hamiltonian functions of , which converges to ℏ when , such that for each N the system generated by possesses a -dimensional hyperbolic invariant torus with fixed frequency vector , which admits a homoclinic point with splitting matrix of the form , with , where and .
Accepted:
Published online:
Jean-Pierre Marco 1
@article{CRMATH_2005__340_11_839_0,
author = {Jean-Pierre Marco},
title = {Sur les bornes inf\'erieures de l'\'ecart des vari\'et\'es invariantes},
journal = {Comptes Rendus. Math\'ematique},
pages = {839--842},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {11},
doi = {10.1016/j.crma.2005.04.020},
language = {fr},
}
Jean-Pierre Marco. Sur les bornes inférieures de l'écart des variétés invariantes. Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 839-842. doi: 10.1016/j.crma.2005.04.020
[1] Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys, Volume 47 (1992), pp. 59-140
[2] On the splitting of invariant manifolds in multi-dimensional near-integrable Hamiltonian systems, Mem. Amer. Math. Soc., Volume 163 (2003)
[3] J.-P. Marco, Uniform lower bounds of the splitting for analytic symplectic systems, soumis aux Ann. Inst. Fourier
[4] Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. I.H.E.S., Volume 96 (2003)
[5] A mechanism for the destruction of resonance tori in Hamiltonian systems, Math. USSR-Sb., Volume 68 (1991), pp. 181-203
Cited by Sources:
Comments - Policy
