[Sur la catégorie dérivée de faisceaux cohérents sur une variété de Fano de dimension 5]
Let
Soit
Accepté le :
Publié le :
Alexander Samokhin 1
@article{CRMATH_2005__340_12_889_0, author = {Alexander Samokhin}, title = {On the derived category of coherent sheaves on a 5-dimensional {Fano} variety}, journal = {Comptes Rendus. Math\'ematique}, pages = {889--893}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.04.033}, language = {en}, }
Alexander Samokhin. On the derived category of coherent sheaves on a 5-dimensional Fano variety. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 889-893. doi : 10.1016/j.crma.2005.04.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.033/
[1] Coherent sheaves on
[2] Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk USSR Ser. Mat., Volume 53 (1989) no. 1, pp. 23-42
[3] Representable functors, Serre functors, and mutations, Izv. Akad. Nauk USSR Ser. Mat., Volume 53 (1989) no. 6, pp. 519-541
[4] On the derived category of coherent sheaves on some homogeneous spaces, Invent. Math., Volume 92 (1988), pp. 479-508
[5] Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 120-139
[6] A. Kuznetsov, Fano threefolds
[7] A. Kuznetsov, in preparation
[8] Exceptional set of vector bundles on the variety
[9] The derived category of coherent sheaves on
Cité par Sources :
⁎ This work was supported in part by the French Government fellowship and by the RFFI award No 02-01-22005.
Commentaires - Politique