This Note presents a randomized method to approximate any vector v from some set . The data one is given is the set T, and k scalar products , where are i.i.d. isotropic subgaussian random vectors in , and . We show that with high probability any for which is close to the data vector will be a good approximation of v, and that the degree of approximation is determined by a natural geometric parameter associated with the set T. This extends and improves recent results by Candes and Tao.
Dans cette Note, on présente une méthode stochastique pour approcher un vecteur v d'une partie . Les données sont d'une part T et d'autre part k produits scalaires , où sont des vecteurs aléatoires de , indépendants de type sous-gaussiens, et . On montre qu'avec une grande probabilité, tout pour lequel est proche de est une bonne approximation de v avec un degré d'erreur déterminé par un paramètre de la géométrie de T. Cette approche permet de généraliser et d'améliorer des résultats d'un récent travail de Candes et Tao.
Accepted:
Published online:
Shahar Mendelson 1; Alain Pajor 2; Nicole Tomczak-Jaegermann 3
@article{CRMATH_2005__340_12_885_0, author = {Shahar Mendelson and Alain Pajor and Nicole Tomczak-Jaegermann}, title = {Reconstruction and subgaussian processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {885--888}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.04.032}, language = {en}, }
Shahar Mendelson; Alain Pajor; Nicole Tomczak-Jaegermann. Reconstruction and subgaussian processes. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 885-888. doi : 10.1016/j.crma.2005.04.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.032/
[1] The change in the diameter of a convex body under a random sign-projection (V.D. Milman; G. Schechtman, eds.), GAFA Seminar Notes 2002–2003, Lecture Notes in Math., vol. 1850, 2004, pp. 31-39
[2] P.L. Bartlett, S. Mendelson, Empirical minimization, Probab. Theory Related Fields, in press
[3] Theory of classification: a survey of recent advances, available from http://www.econ.upf.es/lugosi/esaimsurvey.pdf
[4] E. Candes, T. Tao, Near optimal recovery from random projections: universal encoding strategies, Preprint
[5] The widths of a Euclidean ball, Dokl. Acad. Nauk SSSR, Volume 277 (1984), pp. 1048-1052 (in Russian); English translation: Soviet Math. Dokl., 30, 1984, pp. 200-204
[6] Y. Gordon, A. Litvak, S. Mendelson, A. Pajor, private communication
[7] B. Klartag, S. Mendelson, Empirical processes and random projections, J. Funct. Anal., in press
[8] GAFA Seminar Notes 2002–2003 (V.D. Milman; G. Schechtman, eds.), Lecture Notes in Math., vol. 1850, 2004, pp. 193-235
[9] Statistical Sufficiency for classes in empirical spaces (N. Cesa-Bianchi; S.A. Goldman, eds.), Proceedings of the 13th Annual Conference on Computational Learning Theory COLT00, 2000, pp. 81-89
[10] Regularization of star bodies by random hyperplane cut off, Studia Math., Volume 159 (2003), pp. 247-261
[11] Subspaces of small codimension of finite-dimensional Banach spaces, Proc. Amer. Math. Soc., Volume 97 (1986) no. 4, pp. 637-642
[12] Nombres de Gelfand et sections euclidiennes de grande dimension, Séminaire d'Analyse Fonctionelle 1984/1985, Publ. Math. Univ. Paris VII, vol. 26, Univ. Paris VII, Paris, 1986, pp. 37-47 (in French) (Gelfand numbers and high-dimensional Euclidean sections)
[13] M. Rudelson, R. Vershynin, Geometric approach to error correcting codes and reconstruction of signals, Preprint
[14] M. Talagrand, The Generic Chaining, Springer-Verlag, in press
Cited by Sources:
Comments - Policy