[Sur les systèmes de Pfaff en dimension deux]
On montre que le problème de Cauchy associé à un système de Pfaff avec des coefficients dans , , dans un ouvert connexe et simplement connexe Ω de admet une solution unique pourvu que ses coefficients satisfassent une condition de compatibilité au sens des distributions.
We prove that the Cauchy problem associated with a Pfaff system with coefficients in , , in a connected and simply-connected open subset Ω of has a unique solution provided that its coefficients satisfies a compatibility condition in the distributional sense.
Accepté le :
Publié le :
Sorin Mardare 1
@article{CRMATH_2005__340_12_879_0, author = {Sorin Mardare}, title = {On {Pfaff} systems with $ {L}^{p}$ coefficients in dimension two}, journal = {Comptes Rendus. Math\'ematique}, pages = {879--884}, publisher = {Elsevier}, volume = {340}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.05.013}, language = {en}, }
Sorin Mardare. On Pfaff systems with $ {L}^{p}$ coefficients in dimension two. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 879-884. doi : 10.1016/j.crma.2005.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.05.013/
[1] Sobolev Spaces, Academic Press, 1975
[2] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983
[3] On the fundamental equations of differential geometry, Amer. J. Math., Volume 72 (1950), pp. 757-774
[4] The fundamental theorem of surface theory with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290
[5] S. Mardare, On Pfaff systems with -coefficients and their applications in differential geometry, J. Math. Pures Appl., in press
[6] Analyse II : Calcul Différentiel et Equations Différentielles, Hermann, Paris, 1992
[7] Systems of total differential equations defined over simply connected domains, Ann. Math., Volume 35 (1934), pp. 730-734
Cité par Sources :
Commentaires - Politique