Comptes Rendus
Partial Differential Equations
On Pfaff systems with Lp coefficients in dimension two
Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 879-884.

We prove that the Cauchy problem associated with a Pfaff system with coefficients in Llocp, p>2, in a connected and simply-connected open subset Ω of R2 has a unique solution provided that its coefficients satisfies a compatibility condition in the distributional sense.

On montre que le problème de Cauchy associé à un système de Pfaff avec des coefficients dans Llocp, p>2, dans un ouvert connexe et simplement connexe Ω de R2 admet une solution unique pourvu que ses coefficients satisfassent une condition de compatibilité au sens des distributions.

Published online:
DOI: 10.1016/j.crma.2005.05.013

Sorin Mardare 1

1 Laboratoire Jacques-Louis Lions, université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France
     author = {Sorin Mardare},
     title = {On {Pfaff} systems with $ {L}^{p}$ coefficients in dimension two},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {879--884},
     publisher = {Elsevier},
     volume = {340},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crma.2005.05.013},
     language = {en},
AU  - Sorin Mardare
TI  - On Pfaff systems with $ {L}^{p}$ coefficients in dimension two
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 879
EP  - 884
VL  - 340
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2005.05.013
LA  - en
ID  - CRMATH_2005__340_12_879_0
ER  - 
%0 Journal Article
%A Sorin Mardare
%T On Pfaff systems with $ {L}^{p}$ coefficients in dimension two
%J Comptes Rendus. Mathématique
%D 2005
%P 879-884
%V 340
%N 12
%I Elsevier
%R 10.1016/j.crma.2005.05.013
%G en
%F CRMATH_2005__340_12_879_0
Sorin Mardare. On Pfaff systems with $ {L}^{p}$ coefficients in dimension two. Comptes Rendus. Mathématique, Volume 340 (2005) no. 12, pp. 879-884. doi : 10.1016/j.crma.2005.05.013.

[1] R.A. Adams Sobolev Spaces, Academic Press, 1975

[2] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983

[3] P. Hartman; A. Wintner On the fundamental equations of differential geometry, Amer. J. Math., Volume 72 (1950), pp. 757-774

[4] S. Mardare The fundamental theorem of surface theory with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290

[5] S. Mardare, On Pfaff systems with Lp-coefficients and their applications in differential geometry, J. Math. Pures Appl., in press

[6] L. Schwartz Analyse II : Calcul Différentiel et Equations Différentielles, Hermann, Paris, 1992

[7] T.Y. Thomas Systems of total differential equations defined over simply connected domains, Ann. Math., Volume 35 (1934), pp. 730-734

Cited by Sources:

Comments - Policy