[Intermittent random fields. Part I: fields with symmetric increments]
The purpose of this Note is to construct a natural family of random processes and fields having a multifractal character. Such objects play a crucial rôle in modelling turbulence and financial markets. In the present first part we present a model of a field with symmetric increments.
Le but de cette Note est de construire une famille naturelle de processus et de champs aléatoires ayant un caractère multifractal. De tels objets jouent un rôle crucial dans la modélisation de la turbulence et des marchés financiers. Dans cette première partie nous présentons un modèle de champ à accroissements symétriques.
Accepted:
Published online:
Jean Duchon 1; Raoul Robert 1
@article{CRMATH_2005__341_4_265_0, author = {Jean Duchon and Raoul Robert}, title = {Champs al\'eatoires intermittents. {Partie} {I} : champs \`a accroissements sym\'etriques}, journal = {Comptes Rendus. Math\'ematique}, pages = {265--268}, publisher = {Elsevier}, volume = {341}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2005.06.022}, language = {fr}, }
Jean Duchon; Raoul Robert. Champs aléatoires intermittents. Partie I : champs à accroissements symétriques. Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 265-268. doi : 10.1016/j.crma.2005.06.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.022/
[1] Modelling financial time series using multifractal random walks, Physica A, Volume 299 (2001), pp. 84-92
[2] Sur le chaos multiplicatif, Ann. Sci. Math. Quebec, Volume 9 (1985), pp. 435-444
[3] A refinement of previous hypotheses concerning the local structure of turbulence, J. Fluid Mech., Volume 13 (1962), pp. 83-85
[4] A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence (M. Roseblatt; C. van Atta, eds.), Statistical Models and Turbulence, La Jolla, CA, Lecture Notes in Phys., vol. 12, Springer, New York, 1972, pp. 333-335
[5] Heavy tails in finance for independent or multifractal price increments (S.T. Rachev, ed.), Handbook of Heavy Tailed Distributions in Finance, Elsevier, 2003
[6] Some specific features of atmospheric turbulence, J. Fluid Mech., Volume 13 (1962), pp. 77-81
[7] The skewed multifractal random walk with applications to option smiles, Quantitative Finance, Volume 2 (2002), pp. 303-314
Cited by Sources:
Comments - Policy