Comptes Rendus
Number Theory
Finiteness of Abelian fundamental groups with restricted ramification
Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 207-210.

We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with bounded ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic scheme.

Nous définissons un certain quotient du groupe fondamental étale d'un schéma qui classifie les revêtements étales à ramification bornée le long du bord, et démontrons la finitude de ce groupe rendu abélien pour un schéma arithmétique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.07.001

Toshiro Hiranouchi 1

1 Graduate School of Mathematics, Kyushu University 33, Fukuoka 812-8581, Japan
@article{CRMATH_2005__341_4_207_0,
     author = {Toshiro Hiranouchi},
     title = {Finiteness of {Abelian} fundamental groups with restricted ramification},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {207--210},
     publisher = {Elsevier},
     volume = {341},
     number = {4},
     year = {2005},
     doi = {10.1016/j.crma.2005.07.001},
     language = {en},
}
TY  - JOUR
AU  - Toshiro Hiranouchi
TI  - Finiteness of Abelian fundamental groups with restricted ramification
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 207
EP  - 210
VL  - 341
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2005.07.001
LA  - en
ID  - CRMATH_2005__341_4_207_0
ER  - 
%0 Journal Article
%A Toshiro Hiranouchi
%T Finiteness of Abelian fundamental groups with restricted ramification
%J Comptes Rendus. Mathématique
%D 2005
%P 207-210
%V 341
%N 4
%I Elsevier
%R 10.1016/j.crma.2005.07.001
%G en
%F CRMATH_2005__341_4_207_0
Toshiro Hiranouchi. Finiteness of Abelian fundamental groups with restricted ramification. Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 207-210. doi : 10.1016/j.crma.2005.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.001/

[1] A. Abbes; T. Saito Ramification of local fields with imperfect residue fields, Amer. J. Math., Volume 124 (2002) no. 5, pp. 879-920

[2] H.P. Epp Eliminating wild ramification, Invent. Math., Volume 19 (1973), pp. 235-249

[3] A. Grothendieck Revêtements étales et groupe fondamental (SGA 1), Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961, Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin, 1971

[4] A. Grothendieck; J.P. Murre The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Math., vol. 208, Springer-Verlag, Berlin, 1971

[5] K. Iwasawa On Zl-extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326

[6] N.M. Katz; S. Lang Finiteness theorems in geometric class field theory, Enseign. Math. (2), Volume 27 (1981) no. 3–4, pp. 285-319 (with an appendix by Kenneth A. Ribet)

[7] A. Schmidt Tame coverings of arithmetic schemes, Math. Ann., Volume 322 (2002) no. 1, pp. 1-18

[8] J.-P. Serre Corps locaux, Publications de l'Université de Nancago, vol. VIII, Hermann, Paris, 1968

[9] J.T. Tate p-Divisible groups, Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158-183

Cited by Sources:

Comments - Policy