We define a certain quotient of the étale fundamental group of a scheme which classifies étale coverings with bounded ramification along the boundary, and show the finiteness of the abelianization of this group for an arithmetic scheme.
Nous définissons un certain quotient du groupe fondamental étale d'un schéma qui classifie les revêtements étales à ramification bornée le long du bord, et démontrons la finitude de ce groupe rendu abélien pour un schéma arithmétique.
Accepted:
Published online:
Toshiro Hiranouchi 1
@article{CRMATH_2005__341_4_207_0, author = {Toshiro Hiranouchi}, title = {Finiteness of {Abelian} fundamental groups with restricted ramification}, journal = {Comptes Rendus. Math\'ematique}, pages = {207--210}, publisher = {Elsevier}, volume = {341}, number = {4}, year = {2005}, doi = {10.1016/j.crma.2005.07.001}, language = {en}, }
Toshiro Hiranouchi. Finiteness of Abelian fundamental groups with restricted ramification. Comptes Rendus. Mathématique, Volume 341 (2005) no. 4, pp. 207-210. doi : 10.1016/j.crma.2005.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.001/
[1] Ramification of local fields with imperfect residue fields, Amer. J. Math., Volume 124 (2002) no. 5, pp. 879-920
[2] Eliminating wild ramification, Invent. Math., Volume 19 (1973), pp. 235-249
[3] Revêtements étales et groupe fondamental (SGA 1), Séminaire de Géométrie Algébrique du Bois-Marie 1960–1961, Lecture Notes in Math., vol. 224, Springer-Verlag, Berlin, 1971
[4] The Tame Fundamental Group of a Formal Neighbourhood of a Divisor with Normal Crossings on a Scheme, Lecture Notes in Math., vol. 208, Springer-Verlag, Berlin, 1971
[5] On -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326
[6] Finiteness theorems in geometric class field theory, Enseign. Math. (2), Volume 27 (1981) no. 3–4, pp. 285-319 (with an appendix by Kenneth A. Ribet)
[7] Tame coverings of arithmetic schemes, Math. Ann., Volume 322 (2002) no. 1, pp. 1-18
[8] Corps locaux, Publications de l'Université de Nancago, vol. VIII, Hermann, Paris, 1968
[9] p-Divisible groups, Proc. Conf. Local Fields, Driebergen, 1966, Springer, Berlin, 1967, pp. 158-183
Cited by Sources:
Comments - Policy