Comptes Rendus
Differential Geometry
Bergman kernels and symplectic reduction
Comptes Rendus. Mathématique, Volume 341 (2005) no. 5, pp. 297-302.

We present several results concerning the asymptotic expansion of the invariant Bergman kernel of the spinc Dirac operator associated with high tensor powers of a positive line bundle on a compact symplectic manifold.

Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman G-invariant de l'opérateur de Dirac spinc associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.07.009

Xiaonan Ma 1; Weiping Zhang 2

1 Centre de mathématiques, UMR 7640 du CNRS, École polytechnique, 91128 Palaiseau cedex, France
2 Nankai Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, PR China
@article{CRMATH_2005__341_5_297_0,
     author = {Xiaonan Ma and Weiping Zhang},
     title = {Bergman kernels and symplectic reduction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {297--302},
     publisher = {Elsevier},
     volume = {341},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crma.2005.07.009},
     language = {en},
}
TY  - JOUR
AU  - Xiaonan Ma
AU  - Weiping Zhang
TI  - Bergman kernels and symplectic reduction
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 297
EP  - 302
VL  - 341
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2005.07.009
LA  - en
ID  - CRMATH_2005__341_5_297_0
ER  - 
%0 Journal Article
%A Xiaonan Ma
%A Weiping Zhang
%T Bergman kernels and symplectic reduction
%J Comptes Rendus. Mathématique
%D 2005
%P 297-302
%V 341
%N 5
%I Elsevier
%R 10.1016/j.crma.2005.07.009
%G en
%F CRMATH_2005__341_5_297_0
Xiaonan Ma; Weiping Zhang. Bergman kernels and symplectic reduction. Comptes Rendus. Mathématique, Volume 341 (2005) no. 5, pp. 297-302. doi : 10.1016/j.crma.2005.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.009/

[1] J.-M. Bismut, G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992)

[2] X. Dai; K. Liu; X. Ma On the asymptotic expansion of Bergman kernel, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 193-198 (The full version: J. Differential Geom., preprint) | arXiv

[3] V. Guillemin; S. Sternberg Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538

[4] X. Ma; G. Marinescu The Spinc Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002) no. 3, pp. 651-664

[5] X. Ma; G. Marinescu Generalized Bergman kernels on symplectic manifolds, C.R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 7, pp. 493-498 (The full version) | arXiv

[6] X. Ma, W. Zhang, Bergman kernels and symplectic reduction, preprint

[7] R. Paoletti Moment maps and equivariant Szegö kernels, J. Symplectic Geom., Volume 2 (2003), pp. 133-175

[8] R. Paoletti The Szegö kernel of a symplectic quotient, Adv. Math. (2005) | arXiv

[9] Y. Tian; W. Zhang An analytic proof of the geometric quantization conjecture of Guillemin–Sternberg, Invent. Math., Volume 132 (1998) no. 2, pp. 229-259

Cited by Sources:

Comments - Policy