Given a Hilbert space , Λ an interval of and whose gradient is a compact mapping, we consider a family of functionals of the type:
Étant donné un espace de Hilbert , Λ un intervalle de et dont le gradient est une application compacte, nous considérons une famille de fonctionelle de la forme :
Published online:
Marcello Lucia 1
@article{CRMATH_2005__341_5_287_0, author = {Marcello Lucia}, title = {A mountain pass theorem without {Palais{\textendash}Smale} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {287--291}, publisher = {Elsevier}, volume = {341}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.07.022}, language = {en}, }
Marcello Lucia. A mountain pass theorem without Palais–Smale condition. Comptes Rendus. Mathématique, Volume 341 (2005) no. 5, pp. 287-291. doi : 10.1016/j.crma.2005.07.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.022/
[1] Dual variational methods in critical points theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381
[2] Nonlinear Analysis on Manifolds. Monge–Ampère Equation, Springer-Verlag, Berlin, 1982
[3] Existence results for mean field equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 16 (1999), pp. 653-666
[4] On multivortex solutions in Chern–Simons Gauge theory, Boll. U.M.I. B (8), Volume 1 (1998), pp. 109-121
Cited by Sources:
Comments - Policy