Let be a -linear pseudo-Abelian rigid tensor category. A notion of finiteness due to Kimura and (independently) O'Sullivan guarantees that the ideal of numerically trivial endomorphism of an object is nilpotent. We generalize this result to special Schur-finite objects. In particular, in the category of Chow motives, if X is a smooth projective variety which satisfies the homological sign conjecture, then Kimura-finiteness, a special Schur-finiteness, and the nilpotency of for all i (where ) are all equivalent.
Soit une catégorie tensorielle rigide pseudo-abélienne -lineaire. Une notion de finitude de Kimura et (indépendamment) O'Sullivan garantit que l'idéal des endomorphismes numériquement triviaux d'un objet est nilpotent. Nous généralisons ce résultat à certains objets Schur-finis. En particulier, dans la catégorie des motifs de Chow, si X est une variété projective lisse purement de dimension n qui satisfait la conjecture homologique de signe, alors la finitude de Kimura, l'annulation du motif de X par un certain foncteur de Schur, et la nilpotence de pour tous i, sont équivalentes.
Accepted:
Published online:
Alessio Del Padrone 1; Carlo Mazza 2
@article{CRMATH_2005__341_5_283_0, author = {Alessio Del Padrone and Carlo Mazza}, title = {Schur finiteness and nilpotency}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--286}, publisher = {Elsevier}, volume = {341}, number = {5}, year = {2005}, doi = {10.1016/j.crma.2005.07.010}, language = {en}, }
Alessio Del Padrone; Carlo Mazza. Schur finiteness and nilpotency. Comptes Rendus. Mathématique, Volume 341 (2005) no. 5, pp. 283-286. doi : 10.1016/j.crma.2005.07.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.010/
[1] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, Panoramas and Syntheses, vol. 17, Société Mathématique de France, Paris, 2004
[2] Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova, Volume 108 (2002), pp. 107-291 (with an appendix by P. O'Sullivan)
[3] Catégories tensorielles, Moscow. Math. J., Volume 2 (2002) no. 2, pp. 227-248 (Dedicated to Yuri I. Manin on the occasion of his 65th birthday)
[4] Representation Theory, Graduate Texts in Math., vol. 129, Springer-Verlag, New York, 1991 (A first course, Readings in Mathematics)
[5] V. Guletskiĭ, A remark on nilpotent correspondences, Preprint, January 27, 2004, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0651/
[6] Finite-dimensional motives and the conjectures of Beilinson and Murre, K-Theory, Volume 30 (2003) no. 3, pp. 243-263 (Special issue in honor of Hyman Bass on his seventieth birthday. Part III)
[7] Chow groups are finite dimensional, in some sense, Math. Ann., Volume 331 (2005) no. 1, pp. 173-201
[8] Schur functors and motives, K-Theory, Volume 33 (2004) no. 2, pp. 89-106
[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4, 2004, http://www.gap-system.org
Cited by Sources:
Comments - Policy