We consider continued fractions
(CF) |
Nous considérons une fraction continue
(FC) |
La conjecture de Ramanujan disant que la fraction diverge toujours, quand , restait ouverte jusqu'au présent. Nous montrons, qu'elle est fausse : pour tout il existe une suite réelle telle que la fraction converge. Nous montrons aussi, que la condition précedante de Gill, qui est suffisante pour que la fraction diverge, est celle optimale sur la vitesse de convergence des .
Accepted:
Published online:
Alexey A. Glutsyuk 1
@article{CRMATH_2005__341_7_427_0, author = {Alexey A. Glutsyuk}, title = {On convergence of generalized continued fractions and {Ramanujan's} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {427--432}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.08.001}, language = {en}, }
Alexey A. Glutsyuk. On convergence of generalized continued fractions and Ramanujan's conjecture. Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 427-432. doi : 10.1016/j.crma.2005.08.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.08.001/
[1] The continued fractions found in the unorganized portions of Ramanujan's notebooks, Mem. Amer. Math. Soc., Volume 99 (1992) no. 477
[2] Infinite composition of Möbius transformations, Trans. Amer. Math. Soc., Volume 176 (1973), pp. 479-487
[3] On the convergence of limit periodic continued fractions where . IV, Constr. Approx., Volume 18 (2002) no. 1, pp. 1-17
[4] Die Lehre von den Kettenbrüchen, Band 2, B.G. Teubner, Stuttgart, 1957
[5] A. Tsygvintsev, On the convergence of continued fractions at Runckel's points and the Ramanujan conjecture, submitted for publication
[6] On the convergence of algebraic continued fractions whose coefficients have limiting values, Trans. Amer. Math. Soc., Volume 5 (1904), pp. 253-262
Cited by Sources:
Comments - Policy