[Germes stables de familles tangentielles et singularités de leurs enveloppes]
Une famille tangentielle est un système de courbes régulières, émanées tangentiellement par une autre courbe régulière. Nous classifions les germes de familles tangentielles qui sont stables par déformations parmi les familles tangentielles, et nous étudions les singularités des enveloppes correspondantes. Nous étudions aussi certaines applications de nos résultats en Géométrie Différentielle.
A tangential family is a system of regular curves emanating tangentially from another regular curve. We classify tangential family germs which are stable under deformations among tangential families and we study singularities of their envelopes. We also discuss some applications of our results to Differential Geometry.
Accepté le :
Publié le :
Gianmarco Capitanio 1
@article{CRMATH_2005__341_8_503_0, author = {Gianmarco Capitanio}, title = {Stable tangential family germs and singularities of their envelopes}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--508}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.09.014}, language = {en}, }
Gianmarco Capitanio. Stable tangential family germs and singularities of their envelopes. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 503-508. doi : 10.1016/j.crma.2005.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.014/
[1] On the envelope theory, Uspekhi Mat. Nauk, Volume 31 (1976) no. 3, pp. 248-249 (in Russian)
[2] Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 557-582
[3] On the envelope of 1-parameter families of curves tangent to a semicubic cusp, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 3, pp. 249-254
[4] G. Capitanio, Simple tangential family germs and perestroikas of their envelopes, Bull. Sci. Math., in press
[5] G. Capitanio, Legendrian graphs generated by tangential families, Proc. Edinburgh Math. Soc., in press
[6] Familles de courbes planes différentiables, Topology, Volume 22 (1983) no. 4, pp. 449-474
[7] The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., Volume 114 (2004) no. 2, pp. 247-264
[8] Families of maps from the plane to the plane, J. London Math. Soc. (2), Volume 36 (1987) no. 2, pp. 351-369
[9] Sur la théorie des enveloppes, J. Math. Pures Appl., Volume 9 41 (1962), pp. 177-192
Cité par Sources :
Commentaires - Politique