We propose a refinement of the Ray–Singer torsion, which can be viewed as an analytic counterpart of the refined combinatorial torsion introduced by Turaev. Given a closed, oriented manifold of odd dimension with fundamental group Γ, the refined torsion is a complex valued, holomorphic function defined for representations of Γ which are close to the space of unitary representations. When the representation is unitary the absolute value of the refined torsion is equal to the Ray–Singer torsion, while its phase is determined by the η-invariant. As an application we extend and improve a result of Farber about the relationship between the absolute torsion of Farber–Turaev and the η-invariant.
Nous proposons un raffinement de la torsion analytique de Ray–Singer, qui peut être consideré comme un équivalent analytique du raffinement de la torsion combinatoire introduit par Turaev. Soit M une variété fermée et orientée de dimension impaire et de groupe fondamental Γ. La torsion analytique raffinée est une fonction holomorphe à valeurs complexes, définie pour les représentations de Γ, qui sont proches de l'espace des représentations unitaires. Dans le cas où la représentation est unitaire, la valeur absolue de la torsion analytique raffinée est égale à la torsion de Ray–Singer dès que sa phase est déterminée par l'invariant η. Comme application, nous généralisons et améliorons un resultat de Farber concernant la relation entre la torsion absolue de Farber–Turaev et l'invariant η.
Accepted:
Published online:
Maxim Braverman 1; Thomas Kappeler 2
@article{CRMATH_2005__341_8_497_0, author = {Maxim Braverman and Thomas Kappeler}, title = {A refinement of the {Ray{\textendash}Singer} torsion}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--502}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.09.015}, language = {en}, }
Maxim Braverman; Thomas Kappeler. A refinement of the Ray–Singer torsion. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 497-502. doi : 10.1016/j.crma.2005.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.015/
[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc., Volume 77 (1975), pp. 43-69
[2] Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc., Volume 78 (1975) no. 3, pp. 405-432
[3] An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992)
[4] Refined analytic torsion | arXiv
[5] Euler structures, the variety of representations and the Milnor–Turaev torsion | arXiv
[6] D. Burghelea, S. Haller, Torsion, as a function on the space of representations, in preparation
[7] Analytic torsion and the heat equation, Ann. of Math., Volume 109 (1979), pp. 259-300
[8] Absolute torsion and eta-invariant, Math. Z., Volume 234 (2000) no. 2, pp. 339-349
[9] Absolute torsion, Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math., vol. 231, Amer. Math. Soc., Providence, RI, 1999, pp. 73-85
[10] Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math., Volume 520 (2000), pp. 195-225
[11] The eta invariant and secondary characteristic classes of locally flat bundles, Algebraic and Differential Topology—Global Differential Geometry, Teubner-Texte Math., vol. 70, Teubner, Leipzig, 1984, pp. 49-87
[12] Analytic torsion and R-torsion on Riemannian manifolds, Adv. in Math., Volume 28 (1978), pp. 233-305
[13] Reidemeister torsion in knot theory, Russian Math. Surveys, Volume 41 (1986), pp. 119-182
[14] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Math. USSR Izvestia, Volume 34 (1990), pp. 627-662
[15] Determination of the cobordism ring, Ann. of Math. (2), Volume 72 (1960), pp. 292-311
Cited by Sources:
Comments - Policy