Comptes Rendus
Differential Geometry
Relative modular classes of Lie algebroids
Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 509-514.

We study the relative modular classes of Lie algebroids, and we determine their relationship with the modular classes of Lie algebroids with a twisted Poisson structure.

Nous étudions les classes modulaires relatives des algébroïdes de Lie et nous déterminons leur relation avec les classes modulaires des algébroïdes de Lie avec structure de Poisson tordue.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.09.010

Yvette Kosmann-Schwarzbach 1; Alan Weinstein 2

1 UMR 7640 du CNRS, Centre de mathématiques Laurent Schwartz, École polytechnique, 91128 Palaiseau, France
2 Department of Mathematics, University of California, Berkeley, CA 94720, USA
@article{CRMATH_2005__341_8_509_0,
     author = {Yvette Kosmann-Schwarzbach and Alan Weinstein},
     title = {Relative modular classes of {Lie} algebroids},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {509--514},
     publisher = {Elsevier},
     volume = {341},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.010},
     language = {en},
}
TY  - JOUR
AU  - Yvette Kosmann-Schwarzbach
AU  - Alan Weinstein
TI  - Relative modular classes of Lie algebroids
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 509
EP  - 514
VL  - 341
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2005.09.010
LA  - en
ID  - CRMATH_2005__341_8_509_0
ER  - 
%0 Journal Article
%A Yvette Kosmann-Schwarzbach
%A Alan Weinstein
%T Relative modular classes of Lie algebroids
%J Comptes Rendus. Mathématique
%D 2005
%P 509-514
%V 341
%N 8
%I Elsevier
%R 10.1016/j.crma.2005.09.010
%G en
%F CRMATH_2005__341_8_509_0
Yvette Kosmann-Schwarzbach; Alan Weinstein. Relative modular classes of Lie algebroids. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 509-514. doi : 10.1016/j.crma.2005.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.010/

[1] J.-P. Dufour; A. Haraki Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris, Ser. I, Volume 312 (1991), pp. 137-140

[2] S. Evens; J.-H. Lu; A. Weinstein Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Ser. 2, Volume 50 (1999), pp. 417-436

[3] J. Grabowski; G. Marmo; A.M. Perelomov Poisson structures: towards a classification, Modern Phys. Lett. A, Volume 8 (1993), pp. 1719-1733

[4] J. Grabowski; G. Marmo; P.W. Michor Homology and modular classes of Lie algebroids | arXiv

[5] J. Huebschmann Duality for Lie–Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159

[6] Y. Kosmann-Schwarzbach Modular vector fields and Batalin–Vilkovisky algebras (J. Grabowski; P. Urbanski, eds.), Poisson Geometry, Banach Center Publ., vol. 51, 2000, pp. 109-129

[7] Y. Kosmann-Schwarzbach; C. Laurent-Gengoux The modular class of a twisted Poisson structure | arXiv

[8] J.-L. Koszul Crochet de Schouten–Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui, Astérisque hors série, Soc. Math. France, 1985, pp. 257-271

[9] Z.-J. Liu; P. Xu On quadratic Poisson structures, Lett. Math. Phys., Volume 26 (1992), pp. 33-42

[10] D. Roytenberg Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., Volume 61 (2002), pp. 123-137

[11] P. Ševera; A. Weinstein Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl., Volume 144 (2001), pp. 145-154

[12] A. Weil L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 (deuxième édition, 1965)

[13] A. Weinstein The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997), pp. 379-394

[14] P. Xu Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys., Volume 200 (1999), pp. 545-560

Cited by Sources:

Comments - Policy