We study the relative modular classes of Lie algebroids, and we determine their relationship with the modular classes of Lie algebroids with a twisted Poisson structure.
Nous étudions les classes modulaires relatives des algébroïdes de Lie et nous déterminons leur relation avec les classes modulaires des algébroïdes de Lie avec structure de Poisson tordue.
Accepted:
Published online:
Yvette Kosmann-Schwarzbach 1; Alan Weinstein 2
@article{CRMATH_2005__341_8_509_0, author = {Yvette Kosmann-Schwarzbach and Alan Weinstein}, title = {Relative modular classes of {Lie} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--514}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.09.010}, language = {en}, }
Yvette Kosmann-Schwarzbach; Alan Weinstein. Relative modular classes of Lie algebroids. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 509-514. doi : 10.1016/j.crma.2005.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.010/
[1] Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris, Ser. I, Volume 312 (1991), pp. 137-140
[2] Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Ser. 2, Volume 50 (1999), pp. 417-436
[3] Poisson structures: towards a classification, Modern Phys. Lett. A, Volume 8 (1993), pp. 1719-1733
[4] Homology and modular classes of Lie algebroids | arXiv
[5] Duality for Lie–Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159
[6] Modular vector fields and Batalin–Vilkovisky algebras (J. Grabowski; P. Urbanski, eds.), Poisson Geometry, Banach Center Publ., vol. 51, 2000, pp. 109-129
[7] The modular class of a twisted Poisson structure | arXiv
[8] Crochet de Schouten–Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui, Astérisque hors série, Soc. Math. France, 1985, pp. 257-271
[9] On quadratic Poisson structures, Lett. Math. Phys., Volume 26 (1992), pp. 33-42
[10] Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., Volume 61 (2002), pp. 123-137
[11] Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl., Volume 144 (2001), pp. 145-154
[12] L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 (deuxième édition, 1965)
[13] The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997), pp. 379-394
[14] Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys., Volume 200 (1999), pp. 545-560
Cited by Sources:
Comments - Policy