[Classes modulaires relatives des algébroïdes de Lie]
We study the relative modular classes of Lie algebroids, and we determine their relationship with the modular classes of Lie algebroids with a twisted Poisson structure.
Nous étudions les classes modulaires relatives des algébroïdes de Lie et nous déterminons leur relation avec les classes modulaires des algébroïdes de Lie avec structure de Poisson tordue.
Accepté le :
Publié le :
Yvette Kosmann-Schwarzbach 1 ; Alan Weinstein 2
@article{CRMATH_2005__341_8_509_0, author = {Yvette Kosmann-Schwarzbach and Alan Weinstein}, title = {Relative modular classes of {Lie} algebroids}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--514}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.09.010}, language = {en}, }
Yvette Kosmann-Schwarzbach; Alan Weinstein. Relative modular classes of Lie algebroids. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 509-514. doi : 10.1016/j.crma.2005.09.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.010/
[1] Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris, Ser. I, Volume 312 (1991), pp. 137-140
[2] Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Ser. 2, Volume 50 (1999), pp. 417-436
[3] Poisson structures: towards a classification, Modern Phys. Lett. A, Volume 8 (1993), pp. 1719-1733
[4] Homology and modular classes of Lie algebroids | arXiv
[5] Duality for Lie–Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159
[6] Modular vector fields and Batalin–Vilkovisky algebras (J. Grabowski; P. Urbanski, eds.), Poisson Geometry, Banach Center Publ., vol. 51, 2000, pp. 109-129
[7] The modular class of a twisted Poisson structure | arXiv
[8] Crochet de Schouten–Nijenhuis et cohomologie, Élie Cartan et les mathématiques d'aujourd'hui, Astérisque hors série, Soc. Math. France, 1985, pp. 257-271
[9] On quadratic Poisson structures, Lett. Math. Phys., Volume 26 (1992), pp. 33-42
[10] Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., Volume 61 (2002), pp. 123-137
[11] Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl., Volume 144 (2001), pp. 145-154
[12] L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 (deuxième édition, 1965)
[13] The modular automorphism group of a Poisson manifold, J. Geom. Phys., Volume 23 (1997), pp. 379-394
[14] Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys., Volume 200 (1999), pp. 545-560
- The modular class of a singular foliation, Journal of Geometry and Physics, Volume 192 (2023), p. 104902 | DOI:10.1016/j.geomphys.2023.104902
- Modular class of Lie
-algebroids and adjoint representations, Journal of Geometric Mechanics, Volume 14 (2022) no. 2, p. 273 | DOI:10.3934/jgm.2022008 - Modular classes of Jacobi bundles, São Paulo Journal of Mathematical Sciences, Volume 15 (2021) no. 2, p. 505 | DOI:10.1007/s40863-021-00227-2
- Nambu structures on Lie algebroids and their modular classes, Proceedings - Mathematical Sciences, Volume 129 (2019) no. 4 | DOI:10.1007/s12044-019-0496-6
- Modular classes revisited, International Journal of Geometric Methods in Modern Physics, Volume 11 (2014) no. 09, p. 1460042 | DOI:10.1142/s0219887814600421
- THE MODULAR CLASS OF A LIE ALGEBROID COMORPHISM, Reviews in Mathematical Physics, Volume 25 (2013) no. 10, p. 1343001 | DOI:10.1142/s0129055x13430010
- Modular classes of skew algebroid relations, Transformation Groups, Volume 17 (2012) no. 4, p. 989 | DOI:10.1007/s00031-012-9197-2
- Characteristic classes of Lie algebroid morphisms, Differential Geometry and its Applications, Volume 28 (2010) no. 6, p. 635 | DOI:10.1016/j.difgeo.2010.01.001
- Modular Classes of Lie Algebroid Morphisms, Transformation Groups, Volume 13 (2008) no. 3-4, p. 727 | DOI:10.1007/s00031-008-9032-y
- Jacobi–Nijenhuis algebroids and their modular classes, Journal of Physics A: Mathematical and Theoretical, Volume 40 (2007) no. 44, p. 13311 | DOI:10.1088/1751-8113/40/44/012
- Modular Classes of Regular Twisted Poisson Structures on Lie Algebroids, Letters in Mathematical Physics, Volume 80 (2007) no. 2, p. 183 | DOI:10.1007/s11005-007-0153-3
- Modular Classes of Poisson–Nijenhuis Lie Algebroids, Letters in Mathematical Physics, Volume 80 (2007) no. 3, p. 223 | DOI:10.1007/s11005-007-0164-0
Cité par 12 documents. Sources : Crossref
Commentaires - Politique