[Intégrales de chemins de Feynman pour un oscillateur quartique dépendant du temps]
On étudie une équation de Schrödinger avec une dépendence temporelle dans un potentiel quadratique ainsi que dans un potentiel quartique. L'existence de solutions est démontrée ainsi qu'une représentation en termes d'integrales de chemins de Feynman, définis rigoureusement comme intégrales oscillatoires en dimension infinie.
The Schrödinger equation with a time dependence in both a quadratic and a quartic potential is considered. Existence of solutions is shown and a rigorous Feynman path integral representation for the solution is given in terms of well-defined infinite-dimensional oscillatory integrals.
Accepté le :
Publié le :
Sergio Albeverio 1, 2 ; Sonia Mazzucchi 2
@article{CRMATH_2005__341_10_647_0, author = {Sergio Albeverio and Sonia Mazzucchi}, title = {Feynman path integrals for the time dependent quartic oscillator}, journal = {Comptes Rendus. Math\'ematique}, pages = {647--650}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.024}, language = {en}, }
Sergio Albeverio; Sonia Mazzucchi. Feynman path integrals for the time dependent quartic oscillator. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 647-650. doi : 10.1016/j.crma.2005.09.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.024/
[1] Generalized infinite-dimensional Fresnel integrals, C. R. Acad. Sci. Paris, Volume 338 (2004) no. 3, pp. 255-259
[2] Feynman path integrals for polynomially growing potentials, J. Funct. Anal., Volume 221 (2005) no. 1, pp. 83-121
[3] S. Albeverio, S. Mazzucchi, Feynman path integrals for time-dependent potentials, in: G. Da Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications, Proceedings of the VIII Conference Held in Trento, January 2004
[4] Methods of Modern Mathematical Physics. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975
Cité par Sources :
Commentaires - Politique