Comptes Rendus
Statistics/Probability Theory
Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process
Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 631-634.

We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé–Galton–Watson transient phase and then having a saturation near-critical size-dependent phase. This model based on the concept of saturation allows one to estimate the probability of replication of a DNA molecule at each cycle of a single PCR trajectory with a very good accuracy.

Nous proposons une modélisation stochastique du processus d'amplification par PCR s'appuyant sur un processus de branchement taille-dépendant qui débute par une phase transitoire de type Bienaymé–Galton–Watson supercritique et qui présente ensuite une phase de saturation taille-dépendante presque-critique. Cette modélisation basée sur le concept de saturation permet d'estimer la probabilité de réplication d'une molécule d'ADN à chaque cycle d'amplification à partir de l'observation d'une unique trajectoire d'amplification par PCR avec une très bonne précision.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.09.029

Nadia Lalam 1; Christine Jacob 2; Peter Jagers 3

1 EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Unity of Applied Mathematics and Informatics, INRA, 78352 Jouy-en-Josas cedex, France
3 Chalmers University of Technology, 412 96 Göteborg, Sweden
@article{CRMATH_2005__341_10_631_0,
     author = {Nadia Lalam and Christine Jacob and Peter Jagers},
     title = {Estimation of the {PCR} efficiency based on a size-dependent modelling of the amplification process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {631--634},
     publisher = {Elsevier},
     volume = {341},
     number = {10},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.029},
     language = {en},
}
TY  - JOUR
AU  - Nadia Lalam
AU  - Christine Jacob
AU  - Peter Jagers
TI  - Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 631
EP  - 634
VL  - 341
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2005.09.029
LA  - en
ID  - CRMATH_2005__341_10_631_0
ER  - 
%0 Journal Article
%A Nadia Lalam
%A Christine Jacob
%A Peter Jagers
%T Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process
%J Comptes Rendus. Mathématique
%D 2005
%P 631-634
%V 341
%N 10
%I Elsevier
%R 10.1016/j.crma.2005.09.029
%G en
%F CRMATH_2005__341_10_631_0
Nadia Lalam; Christine Jacob; Peter Jagers. Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 631-634. doi : 10.1016/j.crma.2005.09.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.029/

[1] L.P. Fernando; P.J. Kurian; D.J. Fernandes Quantitation of gene-specific DNA damage by competitive PCR, Anal. Biochem., Volume 306 (2002), pp. 212-221

[2] C. Jacob; J. Peccoud Estimation of the parameters of a branching process from migrating binomial observations, Adv. Appl. Probab., Volume 30 (1998), pp. 948-967

[3] P. Jagers; F.C. Klebaner Random variation and concentration effects in PCR, J. Theor. Biol., Volume 224/3 (2003), pp. 299-304

[4] M. Krawczak; J. Reiss; J. Schmidtke; U. Rosler Polymerase chain reaction: replication errors and reliability of gene diagnosis, Nucleic Acids Res., Volume 17 (1989), pp. 2197-2201

[5] N. Lalam, C. Jacob, Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process, Rapport technique, Unité de biométrie, INRA Jouy-en-Josas, 2003

[6] N. Lalam, C. Jacob, P. Jagers, Modelling the PCR amplification process with size-dependent branching processes and estimation of the yield, Rapport technique, Unité de biométrie, INRA Jouy-en-Josas, 2003

[7] N. Lalam; C. Jacob; P. Jagers Modelling the PCR amplification process by a size-dependent branching process and estimation of the efficiency, Adv. Appl. Probab., Volume 36 (2004), pp. 602-615

[8] N. Lalam, Estimation dans le cadre de processus de branchement taille-dépendants. Application à la PCR quantitative, Thèse de doctorat en Mathématiques appliquées, Université Paris XI, 2003

[9] K.B. Mullis; F. Faloona Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction, Methods Enzymol., Volume 155 (1987), pp. 335-350

[10] J. Peccoud; C. Jacob Theoretical uncertainty of measurements using quantitative Polymerase Chain reaction, Biophys. J., Volume 71 (1996), pp. 101-108

[11] J. Peccoud; C. Jacob Statistical estimations of PCR amplification rates (F. Ferré, ed.), Gene Quantification, Birkhäuser, New York, 1998, pp. 111-128

[12] D. Piau Processus de branchement et champ moyen, Adv. Appl. Probab., Volume 33 (2001), pp. 391-403

[13] D. Piau Immortal branching Markov processes: averaging properties and PCR applications, Ann. Probab., Volume 32 (2004), pp. 337-364

[14] D. Piau Confidence intervals for non homogeneous branching processes and polymerase chain reactions, Ann. Probab., Volume 33 (2005), pp. 674-702

[15] R.K. Saiki; D.H. Gelfand; S. Stoffel; S.J. Scharf; R. Higuchi; G.T. Horn; K.B. Mullis; H.A. Erlich Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science, Volume 239 (1988), pp. 487-491

[16] S. Schnell; C. Mendoza Enzymological considerations for a theoretical description of the Quantitative Competitive Polymerase Chain Reaction, J. Theor. Biol., Volume 184 (1997), pp. 433-440

[17] F. Sun The PCR and branching processes, J. Comput. Biol., Volume 2 (1995), pp. 63-86

[18] D. Wang; C. Zhao; R. Cheng; F. Sun Estimation of the mutation rate during error-prone PCR, J. Comput. Biol., Volume 7 (2000), pp. 143-158

[19] G. Weiss; A. Von Haeseler Modeling the PCR, J. Comput. Biol., Volume 2 (1995), pp. 49-61

[20] G. Weiss; A. Von Haeseler A coalescent approach to the polymerase chain reaction, Nucleic Acids Res., Volume 25 (1997), pp. 3082-3087

[21] C.F. Wu Asymptotic theory of nonlinear least squares estimation, Ann. Statist., Volume 9 (1981), pp. 501-513

Cited by Sources:

Comments - Policy