We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé–Galton–Watson transient phase and then having a saturation near-critical size-dependent phase. This model based on the concept of saturation allows one to estimate the probability of replication of a DNA molecule at each cycle of a single PCR trajectory with a very good accuracy.
Nous proposons une modélisation stochastique du processus d'amplification par PCR s'appuyant sur un processus de branchement taille-dépendant qui débute par une phase transitoire de type Bienaymé–Galton–Watson supercritique et qui présente ensuite une phase de saturation taille-dépendante presque-critique. Cette modélisation basée sur le concept de saturation permet d'estimer la probabilité de réplication d'une molécule d'ADN à chaque cycle d'amplification à partir de l'observation d'une unique trajectoire d'amplification par PCR avec une très bonne précision.
Accepted:
Published online:
Nadia Lalam 1; Christine Jacob 2; Peter Jagers 3
@article{CRMATH_2005__341_10_631_0, author = {Nadia Lalam and Christine Jacob and Peter Jagers}, title = {Estimation of the {PCR} efficiency based on a size-dependent modelling of the amplification process}, journal = {Comptes Rendus. Math\'ematique}, pages = {631--634}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.029}, language = {en}, }
TY - JOUR AU - Nadia Lalam AU - Christine Jacob AU - Peter Jagers TI - Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process JO - Comptes Rendus. Mathématique PY - 2005 SP - 631 EP - 634 VL - 341 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2005.09.029 LA - en ID - CRMATH_2005__341_10_631_0 ER -
%0 Journal Article %A Nadia Lalam %A Christine Jacob %A Peter Jagers %T Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process %J Comptes Rendus. Mathématique %D 2005 %P 631-634 %V 341 %N 10 %I Elsevier %R 10.1016/j.crma.2005.09.029 %G en %F CRMATH_2005__341_10_631_0
Nadia Lalam; Christine Jacob; Peter Jagers. Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 631-634. doi : 10.1016/j.crma.2005.09.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.029/
[1] Quantitation of gene-specific DNA damage by competitive PCR, Anal. Biochem., Volume 306 (2002), pp. 212-221
[2] Estimation of the parameters of a branching process from migrating binomial observations, Adv. Appl. Probab., Volume 30 (1998), pp. 948-967
[3] Random variation and concentration effects in PCR, J. Theor. Biol., Volume 224/3 (2003), pp. 299-304
[4] Polymerase chain reaction: replication errors and reliability of gene diagnosis, Nucleic Acids Res., Volume 17 (1989), pp. 2197-2201
[5] N. Lalam, C. Jacob, Estimation of the offspring mean in a supercritical or near-critical size-dependent branching process, Rapport technique, Unité de biométrie, INRA Jouy-en-Josas, 2003
[6] N. Lalam, C. Jacob, P. Jagers, Modelling the PCR amplification process with size-dependent branching processes and estimation of the yield, Rapport technique, Unité de biométrie, INRA Jouy-en-Josas, 2003
[7] Modelling the PCR amplification process by a size-dependent branching process and estimation of the efficiency, Adv. Appl. Probab., Volume 36 (2004), pp. 602-615
[8] N. Lalam, Estimation dans le cadre de processus de branchement taille-dépendants. Application à la PCR quantitative, Thèse de doctorat en Mathématiques appliquées, Université Paris XI, 2003
[9] Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction, Methods Enzymol., Volume 155 (1987), pp. 335-350
[10] Theoretical uncertainty of measurements using quantitative Polymerase Chain reaction, Biophys. J., Volume 71 (1996), pp. 101-108
[11] Statistical estimations of PCR amplification rates (F. Ferré, ed.), Gene Quantification, Birkhäuser, New York, 1998, pp. 111-128
[12] Processus de branchement et champ moyen, Adv. Appl. Probab., Volume 33 (2001), pp. 391-403
[13] Immortal branching Markov processes: averaging properties and PCR applications, Ann. Probab., Volume 32 (2004), pp. 337-364
[14] Confidence intervals for non homogeneous branching processes and polymerase chain reactions, Ann. Probab., Volume 33 (2005), pp. 674-702
[15] Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science, Volume 239 (1988), pp. 487-491
[16] Enzymological considerations for a theoretical description of the Quantitative Competitive Polymerase Chain Reaction, J. Theor. Biol., Volume 184 (1997), pp. 433-440
[17] The PCR and branching processes, J. Comput. Biol., Volume 2 (1995), pp. 63-86
[18] Estimation of the mutation rate during error-prone PCR, J. Comput. Biol., Volume 7 (2000), pp. 143-158
[19] Modeling the PCR, J. Comput. Biol., Volume 2 (1995), pp. 49-61
[20] A coalescent approach to the polymerase chain reaction, Nucleic Acids Res., Volume 25 (1997), pp. 3082-3087
[21] Asymptotic theory of nonlinear least squares estimation, Ann. Statist., Volume 9 (1981), pp. 501-513
Cited by Sources:
Comments - Policy