Comptes Rendus
Ordinary Differential Equations
Bifurcations of a predator-prey model with non-monotonic response function
[Bifurcations dans un système prédateur-proie avec réponse fonctionnelle non-monotone]
Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 601-604.

On considère un modèle prédateur-proie en dimension 2 dépendant de cinq paramètres adapté du système Volterra–Lotka par une réponse fonctionnelle non-monotone. Une description des différents domaines de stabilité structurelle est présentée ainsi que leurs bifurcations. La structure de l'ensemble de bifurcation se réduit à quatre centres organisateurs de codimension 3. Nous présentons quelques examples d'attracteurs étranges obtenus par une pertubation périodique non autonome.

A 2-dimensional predator-prey model with five parameters is investigated, adapted from the Volterra–Lotka system by a non-monotonic response function. A description of the various domains of structural stability and their bifurcations is given. The bifurcation structure is reduced to four organising centres of codimension 3. Research is initiated on time-periodic perturbations by several examples of strange attractors.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.09.033

H.W. Broer 1 ; Vincent Naudot 1 ; Robert Roussarie 2 ; Khairul Saleh 1

1 University of Groningen, Department of Mathematics, P.O. Box 800, NL-9700 AV Groningen, The Netherlands
2 Institut mathématiques de Bourgogne, 9, avenue Alain-Savary, B.P. 47870, 21078 Dijon cedex, France
@article{CRMATH_2005__341_10_601_0,
     author = {H.W. Broer and Vincent Naudot and Robert Roussarie and Khairul Saleh},
     title = {Bifurcations of a predator-prey model with non-monotonic response function},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {601--604},
     publisher = {Elsevier},
     volume = {341},
     number = {10},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.033},
     language = {en},
}
TY  - JOUR
AU  - H.W. Broer
AU  - Vincent Naudot
AU  - Robert Roussarie
AU  - Khairul Saleh
TI  - Bifurcations of a predator-prey model with non-monotonic response function
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 601
EP  - 604
VL  - 341
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2005.09.033
LA  - en
ID  - CRMATH_2005__341_10_601_0
ER  - 
%0 Journal Article
%A H.W. Broer
%A Vincent Naudot
%A Robert Roussarie
%A Khairul Saleh
%T Bifurcations of a predator-prey model with non-monotonic response function
%J Comptes Rendus. Mathématique
%D 2005
%P 601-604
%V 341
%N 10
%I Elsevier
%R 10.1016/j.crma.2005.09.033
%G en
%F CRMATH_2005__341_10_601_0
H.W. Broer; Vincent Naudot; Robert Roussarie; Khairul Saleh. Bifurcations of a predator-prey model with non-monotonic response function. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 601-604. doi : 10.1016/j.crma.2005.09.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.033/

[1] J.F. Andrews A mathematical model for the continuous of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., Volume 10 (1968), pp. 707-723

[2] A.D. Bazykin; F.S. Berezovskaya; G. Denisov; Y.A. Kuznetsov The influence of predator saturation effect and competition among predators on predator-prey system dynamics, Ecol. Modelling, Volume 14 (1993), pp. 39-57

[3] H.W. Broer, V. Naudot, R. Roussarie, K. Saleh, Dynamics of a predator-prey model with non-monotonic response function, Preprint, 2005

[4] F. Dumortier; R. Roussarie; J. Sotomayor; H. Zoladek Bifurcations of Planar Vector Fields, Lecture Notes in Math., vol. 1480, Springer-Verlag, 1991

[5] K. Saleh, Organising centres in semi-global analysis of dynamical systems, PhD Thesis, University of Groningen, 2005

[6] Y.A. Kuznetsov Elements of Applied Bifurcations Theory, Springer-Verlag, 1995

[7] A.J. Lotka Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925

[8] J.W. Milnor Topology from Differential Viewpoint, The University Press of Virginia, 1990

[9] J.R. Munkres Elementary Differential Topology, Princeton University Press, 1963

[10] J. Palis; W. de Melo Geometric Theory of Dynamical System, Springer-Verlag, 1982

[11] S. Rinaldi; S. Muratori; Y.A. Kuznetsov Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., Volume 55 (1993), pp. 15-35

[12] V. Volterra Variazioni e fluttuaziono del numero di individui in specie animali conviventi, Mem. Accad. Lincei, Volume 2 (1926), pp. 31-113

  • Yue Yang; Yancong Xu; Libin Rong; Shigui Ruan Bifurcations and global dynamics of a predator–prey mite model of Leslie type, Studies in Applied Mathematics, Volume 152 (2024) no. 4, p. 1251 | DOI:10.1111/sapm.12675
  • Chuang Xiang; Min Lu; Jicai Huang Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting, Journal of Differential Equations, Volume 314 (2022), p. 370 | DOI:10.1016/j.jde.2022.01.016
  • Min Lu; Jicai Huang Global analysis in Bazykin's model with Holling II functional response and predator competition, Journal of Differential Equations, Volume 280 (2021), p. 99 | DOI:10.1016/j.jde.2021.01.025
  • Deeptajyoti Sen; Sergei Petrovskii; S. Ghorai; Malay Banerjee Rich Bifurcation Structure of Prey–Predator Model Induced by the Allee Effect in the Growth of Generalist Predator, International Journal of Bifurcation and Chaos, Volume 30 (2020) no. 06, p. 2050084 | DOI:10.1142/s0218127420500844
  • Johan M. Tuwankotta; Eric Harjanto; Livia Owen Dynamics and Bifurcations in a Dynamical System of a Predator-Prey Type with Nonmonotonic Response Function and Time-Periodic Variation, Dynamical Systems, Bifurcation Analysis and Applications, Volume 295 (2019), p. 31 | DOI:10.1007/978-981-32-9832-3_3
  • A. M. Yousef; S. M. Salman; A. A. Elsadany Stability and Bifurcation Analysis of a Delayed Discrete Predator–Prey Model, International Journal of Bifurcation and Chaos, Volume 28 (2018) no. 09, p. 1850116 | DOI:10.1142/s021812741850116x
  • Eric Harjanto; J.M. Tuwankotta Bifurcation of periodic solution in a Predator–Prey type of systems with non-monotonic response function and periodic perturbation, International Journal of Non-Linear Mechanics, Volume 85 (2016), p. 188 | DOI:10.1016/j.ijnonlinmec.2016.06.011
  • V. Naudot; E. Noonburg Predator–prey systems with a general non-monotonic functional response, Physica D: Nonlinear Phenomena, Volume 253 (2013), p. 1 | DOI:10.1016/j.physd.2013.01.019
  • I. Kusbeyzi; O.O. Aybar; A. Hacinliyan Stability and bifurcation in two species predator–prey models, Nonlinear Analysis: Real World Applications, Volume 12 (2011) no. 1, p. 377 | DOI:10.1016/j.nonrwa.2010.06.023
  • Henk W. Broer; Valery A. Gaiko Global qualitative analysis of a quartic ecological model, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 2, p. 628 | DOI:10.1016/j.na.2009.07.004
  • H.W. Broer; Vincent Naudot; Robert Roussarie; Khairul Saleh Bifurcations of a predator-prey model with non-monotonic response function, Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, p. 601 | DOI:10.1016/j.crma.2005.09.033

Cité par 11 documents. Sources : Crossref

Commentaires - Politique