[Bifurcations dans un système prédateur-proie avec réponse fonctionnelle non-monotone]
On considère un modèle prédateur-proie en dimension 2 dépendant de cinq paramètres adapté du système Volterra–Lotka par une réponse fonctionnelle non-monotone. Une description des différents domaines de stabilité structurelle est présentée ainsi que leurs bifurcations. La structure de l'ensemble de bifurcation se réduit à quatre centres organisateurs de codimension 3. Nous présentons quelques examples d'attracteurs étranges obtenus par une pertubation périodique non autonome.
A 2-dimensional predator-prey model with five parameters is investigated, adapted from the Volterra–Lotka system by a non-monotonic response function. A description of the various domains of structural stability and their bifurcations is given. The bifurcation structure is reduced to four organising centres of codimension 3. Research is initiated on time-periodic perturbations by several examples of strange attractors.
Accepté le :
Publié le :
H.W. Broer 1 ; Vincent Naudot 1 ; Robert Roussarie 2 ; Khairul Saleh 1
@article{CRMATH_2005__341_10_601_0, author = {H.W. Broer and Vincent Naudot and Robert Roussarie and Khairul Saleh}, title = {Bifurcations of a predator-prey model with non-monotonic response function}, journal = {Comptes Rendus. Math\'ematique}, pages = {601--604}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.033}, language = {en}, }
TY - JOUR AU - H.W. Broer AU - Vincent Naudot AU - Robert Roussarie AU - Khairul Saleh TI - Bifurcations of a predator-prey model with non-monotonic response function JO - Comptes Rendus. Mathématique PY - 2005 SP - 601 EP - 604 VL - 341 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2005.09.033 LA - en ID - CRMATH_2005__341_10_601_0 ER -
%0 Journal Article %A H.W. Broer %A Vincent Naudot %A Robert Roussarie %A Khairul Saleh %T Bifurcations of a predator-prey model with non-monotonic response function %J Comptes Rendus. Mathématique %D 2005 %P 601-604 %V 341 %N 10 %I Elsevier %R 10.1016/j.crma.2005.09.033 %G en %F CRMATH_2005__341_10_601_0
H.W. Broer; Vincent Naudot; Robert Roussarie; Khairul Saleh. Bifurcations of a predator-prey model with non-monotonic response function. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 601-604. doi : 10.1016/j.crma.2005.09.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.033/
[1] A mathematical model for the continuous of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., Volume 10 (1968), pp. 707-723
[2] The influence of predator saturation effect and competition among predators on predator-prey system dynamics, Ecol. Modelling, Volume 14 (1993), pp. 39-57
[3] H.W. Broer, V. Naudot, R. Roussarie, K. Saleh, Dynamics of a predator-prey model with non-monotonic response function, Preprint, 2005
[4] Bifurcations of Planar Vector Fields, Lecture Notes in Math., vol. 1480, Springer-Verlag, 1991
[5] K. Saleh, Organising centres in semi-global analysis of dynamical systems, PhD Thesis, University of Groningen, 2005
[6] Elements of Applied Bifurcations Theory, Springer-Verlag, 1995
[7] Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925
[8] Topology from Differential Viewpoint, The University Press of Virginia, 1990
[9] Elementary Differential Topology, Princeton University Press, 1963
[10] Geometric Theory of Dynamical System, Springer-Verlag, 1982
[11] Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., Volume 55 (1993), pp. 15-35
[12] Variazioni e fluttuaziono del numero di individui in specie animali conviventi, Mem. Accad. Lincei, Volume 2 (1926), pp. 31-113
- Bifurcations and global dynamics of a predator–prey mite model of Leslie type, Studies in Applied Mathematics, Volume 152 (2024) no. 4, p. 1251 | DOI:10.1111/sapm.12675
- Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting, Journal of Differential Equations, Volume 314 (2022), p. 370 | DOI:10.1016/j.jde.2022.01.016
- Global analysis in Bazykin's model with Holling II functional response and predator competition, Journal of Differential Equations, Volume 280 (2021), p. 99 | DOI:10.1016/j.jde.2021.01.025
- Rich Bifurcation Structure of Prey–Predator Model Induced by the Allee Effect in the Growth of Generalist Predator, International Journal of Bifurcation and Chaos, Volume 30 (2020) no. 06, p. 2050084 | DOI:10.1142/s0218127420500844
- Dynamics and Bifurcations in a Dynamical System of a Predator-Prey Type with Nonmonotonic Response Function and Time-Periodic Variation, Dynamical Systems, Bifurcation Analysis and Applications, Volume 295 (2019), p. 31 | DOI:10.1007/978-981-32-9832-3_3
- Stability and Bifurcation Analysis of a Delayed Discrete Predator–Prey Model, International Journal of Bifurcation and Chaos, Volume 28 (2018) no. 09, p. 1850116 | DOI:10.1142/s021812741850116x
- Bifurcation of periodic solution in a Predator–Prey type of systems with non-monotonic response function and periodic perturbation, International Journal of Non-Linear Mechanics, Volume 85 (2016), p. 188 | DOI:10.1016/j.ijnonlinmec.2016.06.011
- Predator–prey systems with a general non-monotonic functional response, Physica D: Nonlinear Phenomena, Volume 253 (2013), p. 1 | DOI:10.1016/j.physd.2013.01.019
- Stability and bifurcation in two species predator–prey models, Nonlinear Analysis: Real World Applications, Volume 12 (2011) no. 1, p. 377 | DOI:10.1016/j.nonrwa.2010.06.023
- Global qualitative analysis of a quartic ecological model, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 2, p. 628 | DOI:10.1016/j.na.2009.07.004
- Bifurcations of a predator-prey model with non-monotonic response function, Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, p. 601 | DOI:10.1016/j.crma.2005.09.033
Cité par 11 documents. Sources : Crossref
Commentaires - Politique