In this Note we study the problem of exact controllability of the Maxwell's equations in specific media with two different models, on the one hand the so-called Drude–Born–Fedorov model, in the time domain, and on the other hand a simplified bilinear medium.
For the first one we prove the non approximate controllability whereas for the second one we are able to prove the exact controllability under the usual conditions of the wave equation.
Dans cette Note nous étudions le problème de la contrôlabilité exacte des équations de Maxwell en milieux spécifiques avec deux différents modèles, d'un côté le modèle en temps de Drude–Born–Fedorov, et d'un autre côté un milieu bilinéaire simplifié.
Pour le premier on prouve la non contrôlabilité approchée alors que pour le second nous prouvons la contrôlabilité exacte sous les conditions usuelles suffisantes de l'équation des ondes.
Accepted:
Published online:
Patrick Courilleau 1; Thierry Horsin Molinaro 2
@article{CRMATH_2005__341_11_665_0, author = {Patrick Courilleau and Thierry Horsin Molinaro}, title = {On the controllability for {Maxwell's} equations in specific media}, journal = {Comptes Rendus. Math\'ematique}, pages = {665--668}, publisher = {Elsevier}, volume = {341}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.10.011}, language = {en}, }
TY - JOUR AU - Patrick Courilleau AU - Thierry Horsin Molinaro TI - On the controllability for Maxwell's equations in specific media JO - Comptes Rendus. Mathématique PY - 2005 SP - 665 EP - 668 VL - 341 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2005.10.011 LA - en ID - CRMATH_2005__341_11_665_0 ER -
Patrick Courilleau; Thierry Horsin Molinaro. On the controllability for Maxwell's equations in specific media. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 665-668. doi : 10.1016/j.crma.2005.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.011/
[1] Electromagnetic scattering by homogeneous chiral obstacle in a chiral environment, IMA J. Appl. Math., Volume 64 (2000), pp. 245-258
[2] Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low-frequency theory, Math. Methods Appl. Sci., Volume 25 (2002) no. 11, pp. 927-944
[3] P. Ciarlet, G. Legendre, Etudes des équations de Maxwell dans un milieu chiral, in preparation
[4] Integral Equation Methods in Scattering Theory, Pure Appl. Math., Wiley, New York, 1983
[5] P. Courilleau, T. Horsin, On the controllability of bilinear delayed media, in preparation
[6] P. Courilleau, T. Horsin, I. Stratis, On the controllability of time-harmonic chiral media, in preparation
[7] Remarks on spectra of operator Rot, Math. Z., Volume 204 (1990), pp. 235-245
[8] Exact boundary controllability of Maxwell's equations in a general region, SIAM J. Control Optim., Volume 27 (1989), pp. 37-388
[9] Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994
[10] Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems, Appl. Math. Sci., vol. 144, Springer-Verlag, New York, 2001
[11] Exact boundary controllability of Maxwell's equations in heterogeneous media and an application to an inverse source problem, SIAM J. Control Optim., Volume 38 (2000) no. 4, pp. 1145-1170
Cited by Sources:
Comments - Policy