Comptes Rendus
Partial Differential Equations
A Note on the analytic solutions of the Camassa–Holm equation
Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 659-664.

In this Note we are concerned with the well-posedness of the Camassa–Holm equation in analytic function spaces. Using the Abstract Cauchy–Kowalewski Theorem we prove that the Camassa–Holm equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic, belongs to Hs(R) with s>3/2, u0L1< and u0u0xx does not change sign, we prove that the solution stays analytic globally in time.

On étude ici l'équation de Camassa–Holm dans les espaces des fonctions analytiques. On montre que, si les données initiales sont analytiques, il existe, localement dans le temp, une solution unique analytique.

En outre si la la donnée initiale analytique u0(x) est bornée dans L1, appartient à Hs(R) s>3/2 et satisfait la condition u0u0xx0, la solution résulte analytique globalement dans le temp.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.10.006

Maria Carmela Lombardo 1; Marco Sammartino 1; Vincenzo Sciacca 1

1 Department of Mathematics, University of Palermo, via Archirafi 34, 90123 Palermo, Italy
@article{CRMATH_2005__341_11_659_0,
     author = {Maria Carmela Lombardo and Marco Sammartino and Vincenzo Sciacca},
     title = {A {Note} on the analytic solutions of the {Camassa{\textendash}Holm} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {659--664},
     publisher = {Elsevier},
     volume = {341},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.10.006},
     language = {en},
}
TY  - JOUR
AU  - Maria Carmela Lombardo
AU  - Marco Sammartino
AU  - Vincenzo Sciacca
TI  - A Note on the analytic solutions of the Camassa–Holm equation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 659
EP  - 664
VL  - 341
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.006
LA  - en
ID  - CRMATH_2005__341_11_659_0
ER  - 
%0 Journal Article
%A Maria Carmela Lombardo
%A Marco Sammartino
%A Vincenzo Sciacca
%T A Note on the analytic solutions of the Camassa–Holm equation
%J Comptes Rendus. Mathématique
%D 2005
%P 659-664
%V 341
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.10.006
%G en
%F CRMATH_2005__341_11_659_0
Maria Carmela Lombardo; Marco Sammartino; Vincenzo Sciacca. A Note on the analytic solutions of the Camassa–Holm equation. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 659-664. doi : 10.1016/j.crma.2005.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.006/

[1] R. Camassa; D.D. Holm An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664

[2] A. Constantin On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations, Volume 141 (1997) no. 2, pp. 218-235

[3] A. Constantin On the blow-up of solutions of a periodic shallow water equation, J. Nonlinear Sci., Volume 10 (2000), pp. 391-399

[4] A. Constantin; J. Escher Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume XXVI (1998), pp. 303-328

[5] A. Constantin; J. Escher Well-posedness, Global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., Volume 51 (1998), pp. 475-504

[6] A. Constantin; J. Escher Global weak solutions for a shallow water equation, Indiana Univ. Math. J., Volume 47 (1998) no. 4, pp. 1527-1545

[7] R. Danchin A few remarks on the Camassa–Holm equation, J. Differential Integral Equations, Volume 14 (2001), pp. 953-988

[8] R. Danchin A note on well-posedness for Camassa–Holm equation, J. Differential Equations, Volume 192 (2003), pp. 429-444

[9] A. Doelman; E.S. Titi Regularity of solutions and the convergence of the Galerkin method in the Ginzburg–Landau equation, Numer. Funct. Anal. Optim., Volume 14 (1993), pp. 299-321

[10] C. Foias; R. Temam Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal., Volume 87 (1989), pp. 359-369

[11] A. Fokas; B. Fuchssteiner Symplectic structures, their bäcklund transformations and hereditary symmetries, Physica D, Volume 4 (1981), pp. 47-66

[12] A. Himonas; G. Misiołek The Cauchy problem for an integrable shallow-water equation, Differential Integral Equations, Volume 14 (2001), pp. 821-831

[13] A. Himonas; G. Misiołek Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., Volume 327 (2003), pp. 575-584

[14] C.D. Levermore; M. Oliver Analyticity of solutions for a generalized Euler equation, J. Differential Equations, Volume 133 (1997), pp. 321-339

[15] Y.A. Li; P.J. Olver Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, Volume 162 (2000), pp. 27-63

[16] G. Misiołek Classical solutions of the periodic Camassa–Holm equation, Geom. Funct. Anal., Volume 12 (2002), pp. 1080-1104

[17] G. Rodríguez-Blanco On the Cauchy problem for the Camassa–Holm equation, Nonlinear Anal., Volume 46 (2001), pp. 309-327

[18] M.V. Safonov An abstract Cauchy–Kovalevskaya thm in a weighted Banach space, Comm. Pure Appl. Math., Volume XLVIII (1995), pp. 629-637

Cited by Sources:

Work supported by the PRIN grant “Nonlinear Mathematical Problems of Wave Propagation and Stability in Models of Continuous Media”.

Comments - Policy