[Les systèmes de Cantor apériodiques et les diagrammes de Bratteli]
Nous démontrons que chaque système de Cantor apériodique est homéomorphe à une application de Vershik agissant dans l'espace de chemins infinis d'un diagramme de Bratteli ordonné et donnons quelques applications de ce résultat.
We prove that every Cantor aperiodic system is homeomorphic to the Vershik map acting on the space of infinite paths of an ordered Bratteli diagram and give several corollaries of this result.
Accepté le :
Publié le :
Konstantin Medynets 1
@article{CRMATH_2006__342_1_43_0, author = {Konstantin Medynets}, title = {Cantor aperiodic systems and {Bratteli} diagrams}, journal = {Comptes Rendus. Math\'ematique}, pages = {43--46}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2005.10.024}, language = {en}, }
Konstantin Medynets. Cantor aperiodic systems and Bratteli diagrams. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 43-46. doi : 10.1016/j.crma.2005.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.024/
[1] The Rokhlin lemma for homeomorphisms of a Cantor set, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2957-2964
[2] The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., Volume 341 (1994) no. 1, pp. 193-225
[3] Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 953-993
[4] Topological orbit equivalence and
[5] Affable equivalence relations and orbit structure of Cantor dynamical systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475
[6] Weak orbit equivalence of Cantor minimal systems, Int. J. Math., Volume 6 (1995) no. 4, pp. 559-579
[7] Ordered Bratteli diagram, dimension groups, and topological dynamics, Int. J. Math., Volume 3 (1992), pp. 827-864
[8] Topological orbit equivalence of locally compact Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 22 (2002) no. 6, pp. 1871-1903
- Substitution-dynamics and invariant measures for infinite alphabet-path space, Advances in Applied Mathematics, Volume 156 (2024), p. 102687 | DOI:10.1016/j.aam.2024.102687
- BRATTELI–VERSHIKISABILITY OF POLYGONAL BILLIARDS ON THE HYPERBOLIC PLANE, Journal of the Australian Mathematical Society, Volume 117 (2024) no. 1, p. 85 | DOI:10.1017/s1446788723000174
- Dynamical Systems and C∗-Algebras, Encyclopedia of Complexity and Systems Science (2023), p. 1 | DOI:10.1007/978-3-642-27737-5_774-1
- Dynamical Systems and C∗-Algebras, Ergodic Theory (2023), p. 491 | DOI:10.1007/978-1-0716-2388-6_774
- Rotated odometers, Journal of the London Mathematical Society, Volume 107 (2023) no. 6, p. 1983 | DOI:10.1112/jlms.12731
- A Cantor dynamical system is slow if and only if all its finite orbits are attracting, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 6, p. 3039 | DOI:10.3934/dcds.2022007
- Stochastic adding machines based on Bratteli diagrams, Annales de l'Institut Fourier, Volume 70 (2021) no. 6, p. 2543 | DOI:10.5802/aif.3364
- C*-algebras of a Cantor system with finitely many minimal subsets: structures, K-theories, and the index map, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 5, p. 1296 | DOI:10.1017/etds.2020.12
- Bratteli–Vershik models and graph covering models, Advances in Mathematics, Volume 367 (2020), p. 107127 | DOI:10.1016/j.aim.2020.107127
- Recognizability for sequences of morphisms, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 11, p. 2896 | DOI:10.1017/etds.2017.144
- Evolution of the Ergodic Theory, Nauka ta naukoznavstvo, Volume 4 (2019), p. 102 | DOI:10.15407/sofs2019.04.102
- Orders that yield homeomorphisms on Bratteli diagrams, Dynamical Systems, Volume 32 (2017) no. 2, p. 249 | DOI:10.1080/14689367.2016.1197888
- Dynamical properties of some adic systems with arbitrary orderings, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 7, p. 2131 | DOI:10.1017/etds.2015.128
- Subdiagrams and invariant measures on Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 8, p. 2417 | DOI:10.1017/etds.2016.8
- Bratteli–Vershik models for partial actions of ℤ, International Journal of Mathematics, Volume 28 (2017) no. 10, p. 1750073 | DOI:10.1142/s0129167x17500732
- Graph covers and ergodicity for zero-dimensional systems, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 2, p. 608 | DOI:10.1017/etds.2014.72
- Good traces for not necessarily simple dimension groups, Pacific Journal of Mathematics, Volume 281 (2016) no. 2, p. 365 | DOI:10.2140/pjm.2016.281.365
- Linking invariants for smooth minimal solenoids, Dynamical Systems, Volume 30 (2015) no. 3, p. 297 | DOI:10.1080/14689367.2015.1031087
- Інваріантні міри на діаграмах Браттелі, Visnik Nacional noi academii nauk Ukrai ni (2015) no. 9 | DOI:10.15407/visn2015.09.080
- Perfect Orderings on Finite Rank Bratteli Diagrams, Canadian Journal of Mathematics, Volume 66 (2014) no. 1, p. 57 | DOI:10.4153/cjm-2013-041-6
- Invariant measures on stationary Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 4, p. 973 | DOI:10.1017/s0143385709000443
- Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 1, p. 37 | DOI:10.1017/s0143385708000230
Cité par 22 documents. Sources : Crossref
Commentaires - Politique