Comptes Rendus
Dynamical Systems
Cantor aperiodic systems and Bratteli diagrams
[Les systèmes de Cantor apériodiques et les diagrammes de Bratteli]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 43-46.

Nous démontrons que chaque système de Cantor apériodique est homéomorphe à une application de Vershik agissant dans l'espace de chemins infinis d'un diagramme de Bratteli ordonné et donnons quelques applications de ce résultat.

We prove that every Cantor aperiodic system is homeomorphic to the Vershik map acting on the space of infinite paths of an ordered Bratteli diagram and give several corollaries of this result.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.10.024

Konstantin Medynets 1

1 Institute for Low Temperature Physics, 61103 Kharkov, Ukraine
@article{CRMATH_2006__342_1_43_0,
     author = {Konstantin Medynets},
     title = {Cantor aperiodic systems and {Bratteli} diagrams},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {43--46},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crma.2005.10.024},
     language = {en},
}
TY  - JOUR
AU  - Konstantin Medynets
TI  - Cantor aperiodic systems and Bratteli diagrams
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 43
EP  - 46
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.024
LA  - en
ID  - CRMATH_2006__342_1_43_0
ER  - 
%0 Journal Article
%A Konstantin Medynets
%T Cantor aperiodic systems and Bratteli diagrams
%J Comptes Rendus. Mathématique
%D 2006
%P 43-46
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crma.2005.10.024
%G en
%F CRMATH_2006__342_1_43_0
Konstantin Medynets. Cantor aperiodic systems and Bratteli diagrams. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 43-46. doi : 10.1016/j.crma.2005.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.024/

[1] S. Bezuglyi; A.H. Dooley; K. Medynets The Rokhlin lemma for homeomorphisms of a Cantor set, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2957-2964

[2] R. Dougherty; S. Jackson; A.S. Kechris The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., Volume 341 (1994) no. 1, pp. 193-225

[3] F. Durand; B. Host; C. Skau Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, Volume 19 (1999), pp. 953-993

[4] T. Giordano; I. Putnam; C. Skau Topological orbit equivalence and C-crossed products, J. Reine Angew. Math., Volume 469 (1995), pp. 51-111

[5] T. Giordano; I. Putnam; C. Skau Affable equivalence relations and orbit structure of Cantor dynamical systems, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 441-475

[6] E. Glasner; B. Weiss Weak orbit equivalence of Cantor minimal systems, Int. J. Math., Volume 6 (1995) no. 4, pp. 559-579

[7] R.H. Herman; I. Putnam; C. Skau Ordered Bratteli diagram, dimension groups, and topological dynamics, Int. J. Math., Volume 3 (1992), pp. 827-864

[8] H. Matui Topological orbit equivalence of locally compact Cantor minimal systems, Ergodic Theory Dynam. Systems, Volume 22 (2002) no. 6, pp. 1871-1903

  • Sergey Bezuglyi; Palle E.T. Jorgensen; Shrey Sanadhya Substitution-dynamics and invariant measures for infinite alphabet-path space, Advances in Applied Mathematics, Volume 156 (2024), p. 102687 | DOI:10.1016/j.aam.2024.102687
  • ANIMA NAGAR; PRADEEP SINGH BRATTELI–VERSHIKISABILITY OF POLYGONAL BILLIARDS ON THE HYPERBOLIC PLANE, Journal of the Australian Mathematical Society, Volume 117 (2024) no. 1, p. 85 | DOI:10.1017/s1446788723000174
  • T. Giordano; H. -C. Liao Dynamical Systems and C∗-Algebras, Encyclopedia of Complexity and Systems Science (2023), p. 1 | DOI:10.1007/978-3-642-27737-5_774-1
  • T. Giordano; H.-C. Liao Dynamical Systems and C∗-Algebras, Ergodic Theory (2023), p. 491 | DOI:10.1007/978-1-0716-2388-6_774
  • Henk Bruin; Olga Lukina Rotated odometers, Journal of the London Mathematical Society, Volume 107 (2023) no. 6, p. 1983 | DOI:10.1112/jlms.12731
  • Silvère Gangloff; Piotr Oprocha A Cantor dynamical system is slow if and only if all its finite orbits are attracting, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 6, p. 3039 | DOI:10.3934/dcds.2022007
  • Danilo A. Caprio; Ali Messaoudi; Glauco Valle Stochastic adding machines based on Bratteli diagrams, Annales de l'Institut Fourier, Volume 70 (2021) no. 6, p. 2543 | DOI:10.5802/aif.3364
  • SERGEY BEZUGLYI; ZHUANG NIU; WEI SUN C*-algebras of a Cantor system with finitely many minimal subsets: structures, K-theories, and the index map, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 5, p. 1296 | DOI:10.1017/etds.2020.12
  • Takashi Shimomura Bratteli–Vershik models and graph covering models, Advances in Mathematics, Volume 367 (2020), p. 107127 | DOI:10.1016/j.aim.2020.107127
  • VALÉRIE BERTHÉ; WOLFGANG STEINER; JÖRG M. THUSWALDNER; REEM YASSAWI Recognizability for sequences of morphisms, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 11, p. 2896 | DOI:10.1017/etds.2017.144
  • Т.V. Kilochytska Evolution of the Ergodic Theory, Nauka ta naukoznavstvo, Volume 4 (2019), p. 102 | DOI:10.15407/sofs2019.04.102
  • Sergey Bezuglyi; Reem Yassawi Orders that yield homeomorphisms on Bratteli diagrams, Dynamical Systems, Volume 32 (2017) no. 2, p. 249 | DOI:10.1080/14689367.2016.1197888
  • SARAH FRICK; KARL PETERSEN; SANDI SHIELDS Dynamical properties of some adic systems with arbitrary orderings, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 7, p. 2131 | DOI:10.1017/etds.2015.128
  • M. ADAMSKA; S. BEZUGLYI; O. KARPEL; J. KWIATKOWSKI Subdiagrams and invariant measures on Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 37 (2017) no. 8, p. 2417 | DOI:10.1017/etds.2016.8
  • Thierry Giordano; Daniel Gonçalves; Charles Starling Bratteli–Vershik models for partial actions of ℤ, International Journal of Mathematics, Volume 28 (2017) no. 10, p. 1750073 | DOI:10.1142/s0129167x17500732
  • TAKASHI SHIMOMURA Graph covers and ergodicity for zero-dimensional systems, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 2, p. 608 | DOI:10.1017/etds.2014.72
  • David Handelman Good traces for not necessarily simple dimension groups, Pacific Journal of Mathematics, Volume 281 (2016) no. 2, p. 365 | DOI:10.2140/pjm.2016.281.365
  • Waldo Arriagada Linking invariants for smooth minimal solenoids, Dynamical Systems, Volume 30 (2015) no. 3, p. 297 | DOI:10.1080/14689367.2015.1031087
  • Олена Михайлівна Карпель Інваріантні міри на діаграмах Браттелі, Visnik Nacional noi academii nauk Ukrai ni (2015) no. 9 | DOI:10.15407/visn2015.09.080
  • S. Bezuglyi; J. Kwiatkowski; R. Yassawi Perfect Orderings on Finite Rank Bratteli Diagrams, Canadian Journal of Mathematics, Volume 66 (2014) no. 1, p. 57 | DOI:10.4153/cjm-2013-041-6
  • S. BEZUGLYI; J. KWIATKOWSKI; K. MEDYNETS; B. SOLOMYAK Invariant measures on stationary Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 4, p. 973 | DOI:10.1017/s0143385709000443
  • S. BEZUGLYI; J. KWIATKOWSKI; K. MEDYNETS Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 1, p. 37 | DOI:10.1017/s0143385708000230

Cité par 22 documents. Sources : Crossref

Commentaires - Politique