[Conjecture S-adique et les représentations de Bratteli]
Dans cette Note nous utilisons une amélioration conséquente dʼun résultat de S. Ferenczi, concernant les sous-shifts S-adiques, afin dʼen trouver des représentations de Bratteli–Vershik.
In this Note we apply a substantial improvement of a result of S. Ferenczi on S-adic subshifts to give Bratteli–Vershik representations of these subshifts.
Accepté le :
Publié le :
Fabien Durand 1 ; Julien Leroy 1
@article{CRMATH_2012__350_21-22_979_0, author = {Fabien Durand and Julien Leroy}, title = {\protect\emph{S}-adic conjecture and {Bratteli} diagrams}, journal = {Comptes Rendus. Math\'ematique}, pages = {979--983}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.015}, language = {en}, }
Fabien Durand; Julien Leroy. S-adic conjecture and Bratteli diagrams. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 979-983. doi : 10.1016/j.crma.2012.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.015/
[1] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991), pp. 199-215
[2] Special factors of sequences with linear subword complexity, Magdeburd, 1995, World Sci. Publ., River Ege, NJ (1996), pp. 25-34
[3] Finite rank Bratteli–Vershik diagrams are expansive, Ergod. Theory Dynam. Sys., Volume 28 (2008), pp. 739-747
[4] Combinatorics on Bratteli diagrams and dynamical systems, Combinatorics, Automata and Number Theory, Series Encyclopedia of Mathematics and Its Applications, vol. 135, Cambridge University Press, 2010, pp. 338-386
[5] Substitutive dynamical systems, Bratteli diagrams and dimension groups, Ergod. Theory Dynam. Sys., Volume 19 (1999), pp. 953-993
[6] Rank and symbolic complexity, Ergod. Theory Dynam. Sys., Volume 16 (1996), pp. 663-682
[7] Topological orbit equivalence and -crossed products, Internat. J. Math., Volume 469 (1995), pp. 51-111
[8] Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., Volume 3 (1992), pp. 827-864
[9] J. Leroy, Contribution à la résolution de la conjecture S-adique, PhD thesis, Univ. Picardie Jules Verne, 2011.
[10] Some improvements of the S-adic conjecture, Adv. Appl. Math., Volume 48 (2012), pp. 79-98
[11] J. Leroy, G. Richomme, A combinatorial proof of S-adicity for sequences with sub-affine complexity, preprint.
[12] Symbolic dynamics, Amer. J. Math., Volume 60 (1938), pp. 815-866
[13] Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42
[14] Substitution Dynamical Systems – Spectral Analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987
[15] A theorem on the Markov periodical approximation in ergodic theory, J. Sov. Math., Volume 28 (1985), pp. 667-674
Cité par Sources :
Commentaires - Politique