Comptes Rendus
Mathematical Physics
Proof of the Kurlberg–Rudnick rate conjecture
[Démonstration de la conjecture du taux de Kurlberg–Rudnick]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 69-72.

Nous proposons une démonstration de la conjecture d'unique ergodicité quantique d'Hecke pour le modèle de Berry–Hannay, un modèle de mécanique quantique sur un tore de dimension deux. Cette conjecture a été proposée par Z. Rudnick à MSRI, Berkeley, 1999 et à l'ECM, Barcelona, 2000.

In this Note we present a proof of the Hecke quantum unique ergodicity conjecture for the Berry–Hannay model, a model of quantum mechanics on a two dimensional torus. This conjecture was stated in Z. Rudnick's lectures at MSRI, Berkeley, 1999 and ECM, Barcelona, 2000.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.10.033

Shamgar Gurevich 1 ; Ronny Hadani 1

1 School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
@article{CRMATH_2006__342_1_69_0,
     author = {Shamgar Gurevich and Ronny Hadani},
     title = {Proof of the {Kurlberg{\textendash}Rudnick} rate conjecture},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {69--72},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2006},
     doi = {10.1016/j.crma.2005.10.033},
     language = {en},
}
TY  - JOUR
AU  - Shamgar Gurevich
AU  - Ronny Hadani
TI  - Proof of the Kurlberg–Rudnick rate conjecture
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 69
EP  - 72
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.033
LA  - en
ID  - CRMATH_2006__342_1_69_0
ER  - 
%0 Journal Article
%A Shamgar Gurevich
%A Ronny Hadani
%T Proof of the Kurlberg–Rudnick rate conjecture
%J Comptes Rendus. Mathématique
%D 2006
%P 69-72
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crma.2005.10.033
%G en
%F CRMATH_2006__342_1_69_0
Shamgar Gurevich; Ronny Hadani. Proof of the Kurlberg–Rudnick rate conjecture. Comptes Rendus. Mathématique, Volume 342 (2006) no. 1, pp. 69-72. doi : 10.1016/j.crma.2005.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.033/

[1] M. Degli Esposti; S. Graffi; S. Isola Classical limit of the quantized hyperbolic toral automorphisms, Comm. Math. Phys., Volume 167 (1995) no. 3, pp. 471-507

[2] P. Deligne La conjecture de Weil II, Publ. Math. IHES, Volume 52 (1981), pp. 313-428

[3] P. Deligne, Metaplectique, A letter to Kazhdan, 1982

[4] J.H. Hannay; M.V. Berry Quantization of linear maps on the torus – Fresnel diffraction by a periodic grating, Physica D, Volume 1 (1980), pp. 267-291

[5] P. Kurlberg; Z. Rudnick Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J., Volume 103 (2000), pp. 47-78

[6] M.A. Rieffel Non-commutative tori – a case study of non-commutative differentiable manifolds, Contemp. Math., Volume 105 (1990), pp. 191-211

[7] Z. Rudnick, The quantized cat map and quantum ergodicity, Lecture at the MSRI conference “Random Matrices and their Applications”, Berkeley, June 7–11, 1999

[8] Z. Rudnick On quantum unique ergodicity for linear maps of the torus, European Congress of Mathematics, vol. II, Barcelona, 2000, Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 429-437

Cité par Sources :

Commentaires - Politique