[Concentration de masse pour les corps convexes isotropes]
We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constant
Nous démontrons qu'il existe une constante absolue
Accepté le :
Publié le :
Grigoris Paouris 1
@article{CRMATH_2006__342_3_179_0, author = {Grigoris Paouris}, title = {Concentration of mass on isotropic convex bodies}, journal = {Comptes Rendus. Math\'ematique}, pages = {179--182}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2005.11.018}, language = {en}, }
Grigoris Paouris. Concentration of mass on isotropic convex bodies. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 179-182. doi : 10.1016/j.crma.2005.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.018/
[1]
[2] On convex bodies and log-concave probability measures with unconditional basis (V.D. Milman; G. Schechtman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 53-69
[3] Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic Inequalities and Applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3-13
[4] Random points in isotropic convex bodies, Convex Geometric Analysis, Berkeley, CA, 1996, Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53-58
[5] O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Preprint
[6] Averages of norms and quasi-norms, Math. Ann., Volume 312 (1998), pp. 95-124
[7]
[8] Blaschke–Santaló inequalities, J. Differential Geom., Volume 47 (1997), pp. 1-16
[9] Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space (X. Lindenstrauss; V.D. Milman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64-104
[10] Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J., Volume 90 (1997), pp. 73-93
[11] Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc., Volume 133 (2005) no. 2, pp. 565-575
[12] On the
[13] Random vectors in the isotropic position, J. Funct. Anal., Volume 164 (1999), pp. 60-72
- The Orlicz–Lorentz centroid inequality for star bodies*, Monatshefte für Mathematik, Volume 200 (2023) no. 1, p. 179 | DOI:10.1007/s00605-022-01791-1
- On the reverse Orlicz–Lorentz Busemann–Petty centroid inequality, Acta Mathematica Hungarica, Volume 159 (2019) no. 1, p. 211 | DOI:10.1007/s10474-019-00921-w
- Orlicz–Lorentz centroid bodies, Advances in Applied Mathematics, Volume 92 (2018), p. 99 | DOI:10.1016/j.aam.2017.07.003
- The LYZ centroid conjecture for star bodies, Science China Mathematics, Volume 61 (2018) no. 7, p. 1273 | DOI:10.1007/s11425-016-9199-2
- Mean width of random perturbations of random polytopes, Advances in Geometry, Volume 17 (2017) no. 1, p. 75 | DOI:10.1515/advgeom-2016-0032
- A Randomized Sieving Algorithm for Approximate Integer Programming, Algorithmica, Volume 70 (2014) no. 2, p. 208 | DOI:10.1007/s00453-013-9834-8
- Estimating the covariance of random matrices, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2579
- The Orlicz centroid inequality for star bodies, Advances in Applied Mathematics, Volume 48 (2012) no. 2, p. 432 | DOI:10.1016/j.aam.2011.11.001
- On the Orlicz Minkowski Problem for Polytopes, Discrete Computational Geometry, Volume 48 (2012) no. 2, p. 281 | DOI:10.1007/s00454-012-9434-4
- Moment estimates for convex measures, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-2150
- A O(1/ε 2) n -Time Sieving Algorithm for Approximate Integer Programming, LATIN 2012: Theoretical Informatics, Volume 7256 (2012), p. 207 | DOI:10.1007/978-3-642-29344-3_18
- Orlicz projection bodies, Advances in Mathematics, Volume 223 (2010) no. 1, p. 220 | DOI:10.1016/j.aim.2009.08.002
- The even Orlicz Minkowski problem, Advances in Mathematics, Volume 224 (2010) no. 6, p. 2485 | DOI:10.1016/j.aim.2010.02.006
- A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probability Theory and Related Fields, Volume 145 (2009) no. 1-2, p. 1 | DOI:10.1007/s00440-008-0158-6
- An isoperimetric inequality on the ℓp balls, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 44 (2008) no. 2 | DOI:10.1214/07-aihp121
- A central limit theorem for convex sets, Inventiones mathematicae, Volume 168 (2007) no. 1, p. 91 | DOI:10.1007/s00222-006-0028-8
- Power-law estimates for the central limit theorem for convex sets, Journal of Functional Analysis, Volume 245 (2007) no. 1, p. 284 | DOI:10.1016/j.jfa.2006.12.005
- Sampling convex bodies: a random matrix approach, Proceedings of the American Mathematical Society, Volume 135 (2006) no. 5, p. 1293 | DOI:10.1090/s0002-9939-06-08615-1
Cité par 18 documents. Sources : Crossref
Commentaires - Politique