Comptes Rendus
Functional Analysis
Concentration of mass on isotropic convex bodies
[Concentration de masse pour les corps convexes isotropes]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 179-182.

We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constant c>0 such that if K is an isotropic convex body in Rn, then

Prob({xK:x2cnLKt})exp(nt)
for every t1, where LK denotes the isotropic constant.

Nous démontrons qu'il existe une constante absolue c>0, telle que, si K est un corps convexe isotrope, alors

Prob({xK:x2cnLKt})exp(nt)
pour tout t1, où LK désigne la constante d'isotropie.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.11.018

Grigoris Paouris 1

1 Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece
@article{CRMATH_2006__342_3_179_0,
     author = {Grigoris Paouris},
     title = {Concentration of mass on isotropic convex bodies},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {179--182},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2005.11.018},
     language = {en},
}
TY  - JOUR
AU  - Grigoris Paouris
TI  - Concentration of mass on isotropic convex bodies
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 179
EP  - 182
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2005.11.018
LA  - en
ID  - CRMATH_2006__342_3_179_0
ER  - 
%0 Journal Article
%A Grigoris Paouris
%T Concentration of mass on isotropic convex bodies
%J Comptes Rendus. Mathématique
%D 2006
%P 179-182
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crma.2005.11.018
%G en
%F CRMATH_2006__342_3_179_0
Grigoris Paouris. Concentration of mass on isotropic convex bodies. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 179-182. doi : 10.1016/j.crma.2005.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.018/

[1] S. Alesker ψ2-estimate for the Euclidean norm on a convex body in isotropic position (X. Lindenstrauss; V.D. Milman, eds.), Geom. Aspects of Funct. Analysis, Oper. Theory Adv. Appl., vol. 77, Birkhäuser, Basel, 1995, pp. 1-4

[2] S.G. Bobkov; F.L. Nazarov On convex bodies and log-concave probability measures with unconditional basis (V.D. Milman; G. Schechtman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 53-69

[3] S.G. Bobkov; F.L. Nazarov Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic Inequalities and Applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3-13

[4] J. Bourgain Random points in isotropic convex bodies, Convex Geometric Analysis, Berkeley, CA, 1996, Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53-58

[5] O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Preprint

[6] A. Litvak; V.D. Milman; G. Schechtman Averages of norms and quasi-norms, Math. Ann., Volume 312 (1998), pp. 95-124

[7] E. Lutwak; D. Yang; G. Zhang Lp affine isoperimetric inequalities, J. Differential Geom., Volume 56 (2000), pp. 111-132

[8] E. Lutwak; G. Zhang Blaschke–Santaló inequalities, J. Differential Geom., Volume 47 (1997), pp. 1-16

[9] V.D. Milman; A. Pajor Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space (X. Lindenstrauss; V.D. Milman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64-104

[10] V.D. Milman; G. Schechtman Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J., Volume 90 (1997), pp. 73-93

[11] G. Paouris Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc., Volume 133 (2005) no. 2, pp. 565-575

[12] G. Paouris On the Ψ2-behavior of linear functionals on isotropic convex bodies, Studia Math., Volume 168 (2005) no. 3, pp. 285-299

[13] M. Rudelson Random vectors in the isotropic position, J. Funct. Anal., Volume 164 (1999), pp. 60-72

  • Zengle Zhang The Orlicz–Lorentz centroid inequality for star bodies*, Monatshefte für Mathematik, Volume 200 (2023) no. 1, p. 179 | DOI:10.1007/s00605-022-01791-1
  • Y. Feng; T. Ma On the reverse Orlicz–Lorentz Busemann–Petty centroid inequality, Acta Mathematica Hungarica, Volume 159 (2019) no. 1, p. 211 | DOI:10.1007/s10474-019-00921-w
  • Van Hoang Nguyen Orlicz–Lorentz centroid bodies, Advances in Applied Mathematics, Volume 92 (2018), p. 99 | DOI:10.1016/j.aam.2017.07.003
  • Denghui Wu; Jiazu Zhou The LYZ centroid conjecture for star bodies, Science China Mathematics, Volume 61 (2018) no. 7, p. 1273 | DOI:10.1007/s11425-016-9199-2
  • David Alonso-Gutiérrez; Joscha Prochno Mean width of random perturbations of random polytopes, Advances in Geometry, Volume 17 (2017) no. 1, p. 75 | DOI:10.1515/advgeom-2016-0032
  • Daniel Dadush A Randomized Sieving Algorithm for Approximate Integer Programming, Algorithmica, Volume 70 (2014) no. 2, p. 208 | DOI:10.1007/s00453-013-9834-8
  • Pierre Youssef Estimating the covariance of random matrices, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2579
  • Guangxian Zhu The Orlicz centroid inequality for star bodies, Advances in Applied Mathematics, Volume 48 (2012) no. 2, p. 432 | DOI:10.1016/j.aam.2011.11.001
  • Qingzhong Huang; Binwu He On the Orlicz Minkowski Problem for Polytopes, Discrete Computational Geometry, Volume 48 (2012) no. 2, p. 281 | DOI:10.1007/s00454-012-9434-4
  • Radosław Adamczak; Olivier Guédon; Rafał Latała; Alexander Litvak; Krzysztof Oleszkiewicz; Alain Pajor; Nicole Tomczak-Jaegermann Moment estimates for convex measures, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-2150
  • Daniel Dadush A O(1/ε 2) n -Time Sieving Algorithm for Approximate Integer Programming, LATIN 2012: Theoretical Informatics, Volume 7256 (2012), p. 207 | DOI:10.1007/978-3-642-29344-3_18
  • Erwin Lutwak; Deane Yang; Gaoyong Zhang Orlicz projection bodies, Advances in Mathematics, Volume 223 (2010) no. 1, p. 220 | DOI:10.1016/j.aim.2009.08.002
  • Christoph Haberl; Erwin Lutwak; Deane Yang; Gaoyong Zhang The even Orlicz Minkowski problem, Advances in Mathematics, Volume 224 (2010) no. 6, p. 2485 | DOI:10.1016/j.aim.2010.02.006
  • Bo’az Klartag A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probability Theory and Related Fields, Volume 145 (2009) no. 1-2, p. 1 | DOI:10.1007/s00440-008-0158-6
  • Sasha Sodin An isoperimetric inequality on the ℓp balls, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 44 (2008) no. 2 | DOI:10.1214/07-aihp121
  • B. Klartag A central limit theorem for convex sets, Inventiones mathematicae, Volume 168 (2007) no. 1, p. 91 | DOI:10.1007/s00222-006-0028-8
  • B. Klartag Power-law estimates for the central limit theorem for convex sets, Journal of Functional Analysis, Volume 245 (2007) no. 1, p. 284 | DOI:10.1016/j.jfa.2006.12.005
  • Guillaume Aubrun Sampling convex bodies: a random matrix approach, Proceedings of the American Mathematical Society, Volume 135 (2006) no. 5, p. 1293 | DOI:10.1090/s0002-9939-06-08615-1

Cité par 18 documents. Sources : Crossref

Commentaires - Politique