[Concentration de masse pour les corps convexes isotropes]
We establish sharp concentration of mass for isotropic convex bodies: there exists an absolute constant
Nous démontrons qu'il existe une constante absolue
Accepté le :
Publié le :
Grigoris Paouris 1
@article{CRMATH_2006__342_3_179_0, author = {Grigoris Paouris}, title = {Concentration of mass on isotropic convex bodies}, journal = {Comptes Rendus. Math\'ematique}, pages = {179--182}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2005.11.018}, language = {en}, }
Grigoris Paouris. Concentration of mass on isotropic convex bodies. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 179-182. doi : 10.1016/j.crma.2005.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.018/
[1]
[2] On convex bodies and log-concave probability measures with unconditional basis (V.D. Milman; G. Schechtman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1807, Springer, 2003, pp. 53-69
[3] Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic Inequalities and Applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3-13
[4] Random points in isotropic convex bodies, Convex Geometric Analysis, Berkeley, CA, 1996, Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53-58
[5] O. Guédon and G. Paouris, Concentration of mass on the Schatten classes, Preprint
[6] Averages of norms and quasi-norms, Math. Ann., Volume 312 (1998), pp. 95-124
[7]
[8] Blaschke–Santaló inequalities, J. Differential Geom., Volume 47 (1997), pp. 1-16
[9] Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space (X. Lindenstrauss; V.D. Milman, eds.), Geom. Aspects of Funct. Analysis, Lecture Notes in Math., vol. 1376, Springer, 1989, pp. 64-104
[10] Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J., Volume 90 (1997), pp. 73-93
[11] Concentration of mass and central limit properties of isotropic convex bodies, Proc. Amer. Math. Soc., Volume 133 (2005) no. 2, pp. 565-575
[12] On the
[13] Random vectors in the isotropic position, J. Funct. Anal., Volume 164 (1999), pp. 60-72
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier