[Éléments finis pour un problème de transmission préfractale]
Cette Note concerne l'approximation éléments finis d'un problème de transmission à travers la courbe préfractale approchant la courbe fractale de von Koch. On construit un maillage adapté à la géométrie de l'interface et on génère un processus de raffinement de maillage en utilisant des estimations dans des espaces de Sobolev à poids, choisis convenablement. On obtient aussi dans ces espaces une estimation de l'erreur d'approximation.
In this Note we deal with the finite element approximation of a transmission problem across a prefractal curve approximating the von Koch fractal curve. We construct a mesh adapted to the geometric shape of the interface and we refine it consistently with some estimates in suitable weighted Sobolev spaces. In these spaces we also obtain an approximation error estimate.
Accepté le :
Publié le :
Patrizia Bagnerini 1 ; Annalisa Buffa 2 ; Elisa Vacca 3
@article{CRMATH_2006__342_3_211_0, author = {Patrizia Bagnerini and Annalisa Buffa and Elisa Vacca}, title = {Finite elements for a prefractal transmission problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {211--214}, publisher = {Elsevier}, volume = {342}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2005.11.023}, language = {en}, }
Patrizia Bagnerini; Annalisa Buffa; Elisa Vacca. Finite elements for a prefractal transmission problem. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 211-214. doi : 10.1016/j.crma.2005.11.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.023/
[1] Directe and inverse error estimates for finite elements with mesh refinements, Numer. Math., Volume 33 (1979), pp. 447-471
[2] Finite elements mathematics (H. Kardestuncer; D.H. Norrie, eds.), Finite Element Handbook, MacGraw-Hill Book Co., New York, 1987
[3] Basic error estimates for elliptic problems (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, North-Holland, Amsterdam, 1991, pp. 16-351
[4] Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett., Volume 84 (2000), pp. 5776-5779
[5] Second order transmission problem across a fractal surface, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), Volume 27 (2003), pp. 191-213
[6] On the regularity of the solutions for transmission problems, Adv. Math. Sci. Appl., Volume 12 (2002), pp. 455-466
- Computing eigenvalues of the Laplacian on rough domains, Mathematics of Computation, Volume 93 (2023) no. 345, p. 111 | DOI:10.1090/mcom/3827
- Finite difference and finite element methods for partial differential equations on fractals, Revista Integración, Volume 40 (2022) no. 2 | DOI:10.18273/revint.v40n2-2022003
- An optimal mesh generation algorithm for domains with Koch type boundaries, Mathematics and Computers in Simulation, Volume 106 (2014), p. 133 | DOI:10.1016/j.matcom.2014.04.009
- Analysis and Numerics of Some Fractal Boundary Value Problems, Analysis and Numerics of Partial Differential Equations, Volume 4 (2013), p. 237 | DOI:10.1007/978-88-470-2592-9_14
- Mesh generation and numerical analysis of a Galerkin method for highly conductive prefractal layers, Applied Numerical Mathematics, Volume 65 (2013), p. 63 | DOI:10.1016/j.apnum.2012.10.004
Cité par 5 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier