[Les anneaux de déformation universelle ne sont pas nécessairement d'intersection complète]
Nous répondons à une question de M. Flach en démontrant qu'il existe une représentation linéaire d'un groupe profini dont l'anneau de déformation universelle n'est pas un anneau d'intersection complète. Nous montrons que l'arithmétique fournit de tels exemples dans les situations suivantes. Il existe une infinité de corps quadratiques réels F tels qu'il existe une représentation du groupe de Galois de l'extension maximale non-ramifiée de F sur un corps de caractéristique 2 dont l'anneau de déformation universelle n'est pas un anneau d'intersection complète.
We answer a question of M. Flach by showing that there is a linear representation of a profinite group whose universal deformation ring is not a complete intersection. We show that such examples arise in arithmetic in the following way. There are infinitely many real quadratic fields F for which there is a mod 2 representation of the Galois group of the maximal unramified extension of F whose universal deformation ring is not a complete intersection.
Accepté le :
Publié le :
Frauke M. Bleher 1 ; Ted Chinburg 2
@article{CRMATH_2006__342_4_229_0, author = {Frauke M. Bleher and Ted Chinburg}, title = {Universal deformation rings need not be complete intersections}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--232}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.006}, language = {en}, }
Frauke M. Bleher; Ted Chinburg. Universal deformation rings need not be complete intersections. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 229-232. doi : 10.1016/j.crma.2005.12.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.006/
[1] Universal deformation rings and Klein four defect groups, Trans. Amer. Math. Soc., Volume 354 (2002), pp. 3893-3906
[2] Applications of versal deformations to Galois theory, Comment. Math. Helv., Volume 78 (2003), pp. 45-64
[3] T. Chinburg, Can deformation rings of group representations not be local complete intersections?, in: Problems from the Workshop on Automorphisms of Curves in Leiden in August 2004, in press
[4] Explicit construction of universal deformation rings, Boston, MA, 1995, Springer-Verlag, Berlin (1997), pp. 313-326
[5] Éléments de géométrie algébrique, Chapitre IV, Quatrième Partie, Publ. Math. IHES, Volume 32 (1967), pp. 5-361
[6] Deforming Galois representations, Berkeley, CA, 1987, Springer-Verlag, Berlin (1989), pp. 385-437
[7] PARI2, PARI/GP, version 2.1.5, Bordeaux, 2004, http://pari.math.u-bordeaux.fr/
[8] Modular forms of weight one and Galois representations, Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London (1977), pp. 193-268
[9] Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982
- The inverse deformation problem, Compositio Mathematica, Volume 152 (2016) no. 8, p. 1725 | DOI:10.1112/s0010437x16007582
- The inverse problem for universal deformation rings and the special linear group, Transactions of the American Mathematical Society, Volume 368 (2016) no. 12, p. 8597 | DOI:10.1090/tran6644
- Brauer’s generalized decomposition numbers and universal deformation rings, Transactions of the American Mathematical Society, Volume 366 (2014) no. 12, p. 6507 | DOI:10.1090/s0002-9947-2014-06120-5
- Inverse problems for deformation rings, Transactions of the American Mathematical Society, Volume 365 (2013) no. 11, p. 6149 | DOI:10.1090/s0002-9947-2013-05848-5
- Universal deformation rings of modules over Frobenius algebras, Journal of Algebra, Volume 367 (2012), p. 176 | DOI:10.1016/j.jalgebra.2012.06.008
- Universal deformation rings and dihedral blocks with two simple modules, Journal of Algebra, Volume 345 (2011) no. 1, p. 49 | DOI:10.1016/j.jalgebra.2011.08.010
- Universal deformation rings and generalized quaternion defect groups, Advances in Mathematics, Volume 225 (2010) no. 3, p. 1499 | DOI:10.1016/j.aim.2010.04.004
- Universal Deformation Rings for the Symmetric Group S 4, Algebras and Representation Theory, Volume 13 (2010) no. 3, p. 255 | DOI:10.1007/s10468-008-9120-7
- Universal deformation rings need not be complete intersections, Mathematische Annalen, Volume 337 (2007) no. 4, p. 739 | DOI:10.1007/s00208-006-0054-2
Cité par 9 documents. Sources : Crossref
⁎ Supported (respectively) by NSF Grant DMS01-39737 and NSF Grant DMS00-70433.
Commentaires - Politique