We give a dual presentation, in the sense of the dual presentation of Artin groups, of the Temperley–Lieb algebra of type B. In particular, we obtain a basis of this algebra by considering the homomorphic images of the simple elements of the dual monoid. This algebra is the largest quotient of the Hecke algebra whose irreducible representations are parametrized by pairs of Young diagrams with at most one column in each component.
On donne une présentation duale, correspondant à la présentation duale du groupe d'Artin, de l'algèbre de Temperley–Lieb de type B. En particulier, on obtient une base de cette algèbre en considérant l'image des éléments simples du monoïde dual. Cette algèbre est le plus grand quotient de l'algèbre de Hecke dont les représentations irréductibles sont paramétrées par les paires de diagrammes de Young ayant au plus une colonne dans chaque composante.
Accepted:
Published online:
Claire Vincenti 1
@article{CRMATH_2006__342_4_233_0, author = {Claire Vincenti}, title = {Alg\`ebre de {Temperley{\textendash}Lieb} de type {\protect\emph{B}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {233--236}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.007}, language = {fr}, }
Claire Vincenti. Algèbre de Temperley–Lieb de type B. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 233-236. doi : 10.1016/j.crma.2005.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.007/
[1] The dual braid monoid, Ann. Sci. École. Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683
[2] Springer theory in braid groups and the Birman–Ko–Lee monoid, Pacific J. Math., Volume 205 (2002) no. 2, pp. 287-309
[3] Diagram algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 4, pp. 479-524
[4] Dual presentation and linear basis of Temperley–Lieb algebras | arXiv
[5] Representations of Finite Classical Groups, a Hopf Algebra Approach, Lecture Notes in Math., vol. 869, Springer-Verlag, Berlin, 1981
[6] A Temperley–Lieb algebra coming from the braid group, J. Knot Theory Ramifications, Volume 11 (2002) no. 4, pp. 575-599
Cited by Sources:
Comments - Policy