Comptes Rendus
Théorie des groupes
Algèbre de Temperley–Lieb de type B
[Temperley–Lieb algebra of type B]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 233-236.

We give a dual presentation, in the sense of the dual presentation of Artin groups, of the Temperley–Lieb algebra of type B. In particular, we obtain a basis of this algebra by considering the homomorphic images of the simple elements of the dual monoid. This algebra is the largest quotient of the Hecke algebra whose irreducible representations are parametrized by pairs of Young diagrams with at most one column in each component.

On donne une présentation duale, correspondant à la présentation duale du groupe d'Artin, de l'algèbre de Temperley–Lieb de type B. En particulier, on obtient une base de cette algèbre en considérant l'image des éléments simples du monoïde dual. Cette algèbre est le plus grand quotient de l'algèbre de Hecke dont les représentations irréductibles sont paramétrées par les paires de diagrammes de Young ayant au plus une colonne dans chaque composante.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.12.007

Claire Vincenti 1

1 LAMFA, CNRS UMR6140, 33, rue St Leu, 80039 Amiens cedex 1, France
@article{CRMATH_2006__342_4_233_0,
     author = {Claire Vincenti},
     title = {Alg\`ebre de {Temperley{\textendash}Lieb} de type {\protect\emph{B}}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {233--236},
     publisher = {Elsevier},
     volume = {342},
     number = {4},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.007},
     language = {fr},
}
TY  - JOUR
AU  - Claire Vincenti
TI  - Algèbre de Temperley–Lieb de type B
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 233
EP  - 236
VL  - 342
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.007
LA  - fr
ID  - CRMATH_2006__342_4_233_0
ER  - 
%0 Journal Article
%A Claire Vincenti
%T Algèbre de Temperley–Lieb de type B
%J Comptes Rendus. Mathématique
%D 2006
%P 233-236
%V 342
%N 4
%I Elsevier
%R 10.1016/j.crma.2005.12.007
%G fr
%F CRMATH_2006__342_4_233_0
Claire Vincenti. Algèbre de Temperley–Lieb de type B. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 233-236. doi : 10.1016/j.crma.2005.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.007/

[1] D. Bessis The dual braid monoid, Ann. Sci. École. Norm. Sup. (4), Volume 36 (2003) no. 5, pp. 647-683

[2] D. Bessis; F. Digne; J. Michel Springer theory in braid groups and the Birman–Ko–Lee monoid, Pacific J. Math., Volume 205 (2002) no. 2, pp. 287-309

[3] J.J. Graham; G.I. Lehrer Diagram algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4), Volume 36 (2003) no. 4, pp. 479-524

[4] S.J. Lee Dual presentation and linear basis of Temperley–Lieb algebras | arXiv

[5] A.V. Zelevinsky Representations of Finite Classical Groups, a Hopf Algebra Approach, Lecture Notes in Math., vol. 869, Springer-Verlag, Berlin, 1981

[6] M.G. Zinno A Temperley–Lieb algebra coming from the braid group, J. Knot Theory Ramifications, Volume 11 (2002) no. 4, pp. 575-599

Cited by Sources:

Comments - Policy