[Stationary processes on the dyadic tree: prediction and covariance extension]
We define for multiscale dyadic stationary processes the notion of one step positive extension of the covariance matrix, which is the counterpart of the central extension in the single scale case.
Nous définissons dans le cas dyadique la notion d'extension de covariance par étape positive, qui est l'analogue de l'extension centrale dans le cas classique.
Published online:
Daniel Alpay 1; Dan Volok 2
@article{CRMATH_2006__342_4_237_0, author = {Daniel Alpay and Dan Volok}, title = {Processus stationnaires sur l'arbre dyadique : pr\'ediction et extension de covariance}, journal = {Comptes Rendus. Math\'ematique}, pages = {237--241}, publisher = {Elsevier}, volume = {342}, number = {4}, year = {2006}, doi = {10.1016/j.crma.2005.12.018}, language = {fr}, }
Daniel Alpay; Dan Volok. Processus stationnaires sur l'arbre dyadique : prédiction et extension de covariance. Comptes Rendus. Mathématique, Volume 342 (2006) no. 4, pp. 237-241. doi : 10.1016/j.crma.2005.12.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.018/
[1] Évaluation ponctuelle et espace de Hardy : le cas multi-échelle, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 6, pp. 415-420
[2] Interpolation et espace de Hardy sur l'arbre dyadique : le cas stationnaire, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 293-298
[3] Point evaluation and Hardy space on a homogeneous tree, Integral Equations Operator Theory, Volume 53 (2005), pp. 1-22
[4] Stationary processes indexed by a homogeneous tree, Ann. Probab., Volume 22 (1994) no. 1, pp. 195-218
[5] Multiscale statistical signal processing, Wavelets and Applications, Marseille, 1989, RMA Res. Notes Appl. Math., vol. 20, Masson, Paris, 1992, pp. 354-367
[6] Multiscale system theory, IEEE Trans. Circuits Systems I Fund. Theory Appl., Volume 41 (1994) no. 1, pp. 2-15
[7] Fonctions harmoniques sur un arbre, INDAM, Rome, 1971 (Symposia Mathematica), Volume vol. IX, Academic Press, London (1972), pp. 203-270
[8] Extensions of band matrices with band inverses, Linear Algebra Appl., Volume 36 (1986), pp. 1-24
[9] Classes of Linear Operators, vol. II, Operator Theory Adv. Appl., vol. 63, Birkhäuser, Basel, 1993
[10] Alternative interpretation of maximum entropy spectral analysis, IEEE Trans. Inform. Theory, Volume 17 (1971), pp. 493-494
Cited by Sources:
Comments - Policy