Comptes Rendus
Dynamical Systems
Lipschitz equivalence of self-similar sets
[Equivalence Lipschitz d'ensembles autosimilaires]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 191-196.

En 1997, David et Semmes ont posé la question de savoir s'il existe une application bi-lipschitzienne entre les deux compacts linéaires M et M définis par les relations M=(M/5)(M/5+2/5)(M/5+4/5) et M=(M/5)(M/5+3/5)(M/5+4/5). Nous répondons affirmativement à cette question.

In 1997 David and Semmes asked whether there exists a bilipschitz map between the two compact self-similar subset M and M of the real line defined by the relations M=(M/5)(M/5+2/5)(M/5+4/5) and M=(M/5)(M/5+3/5)(M/5+4/5). We answer this question positively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.016

Hui Rao 1 ; Huo-Jun Ruan 2 ; Li-Feng Xi 3

1 Department of Mathematics, Tsinghua University, Beijing, 100084, China
2 Department of Mathematics, Zhejiang University, Hangzhou, 310027, China
3 Institute of Mathematics, Zhejiang Wanli University, Ningbo, 315100, China
@article{CRMATH_2006__342_3_191_0,
     author = {Hui Rao and Huo-Jun Ruan and Li-Feng Xi},
     title = {Lipschitz equivalence of self-similar sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {191--196},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.016},
     language = {en},
}
TY  - JOUR
AU  - Hui Rao
AU  - Huo-Jun Ruan
AU  - Li-Feng Xi
TI  - Lipschitz equivalence of self-similar sets
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 191
EP  - 196
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.016
LA  - en
ID  - CRMATH_2006__342_3_191_0
ER  - 
%0 Journal Article
%A Hui Rao
%A Huo-Jun Ruan
%A Li-Feng Xi
%T Lipschitz equivalence of self-similar sets
%J Comptes Rendus. Mathématique
%D 2006
%P 191-196
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crma.2005.12.016
%G en
%F CRMATH_2006__342_3_191_0
Hui Rao; Huo-Jun Ruan; Li-Feng Xi. Lipschitz equivalence of self-similar sets. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 191-196. doi : 10.1016/j.crma.2005.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.016/

[1] D. Cooper; T. Pignataro On the shape of Cantor sets, J. Differential Geom., Volume 28 (1988), pp. 203-221

[2] G. David; S. Semmes Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Univ. Press, 1997

[3] K.J. Falconer; D.T. Marsh Classification of quasi-circles by Hausdorff dimension, Nonlinearity, Volume 2 (1989), pp. 489-493

[4] K.J. Falconer; D.T. Marsh On the Lipschitz equivalence of Cantor sets, Mathematika, Volume 39 (1992), pp. 223-233

[5] J.E. Hutchinson Fractals and self similarity, Indiana Univ. Math. J., Volume 30 (1981), pp. 713-747

[6] R.D. Mauldin; S.C. Williams Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., Volume 309 (1988), pp. 811-829

[7] H. Rao; Z.-Y. Wen A class of self-similar fractals with overlap structure, Adv. Appl. Math., Volume 20 (1998), pp. 50-72

[8] Z.-Y. Wen; L.-F. Xi Relations among Whitney sets, self-similar arcs and quasi-arcs, Israel J. Math., Volume 136 (2003), pp. 251-267

[9] L.-F. Xi Lipschitz equivalence of self-conformal sets, J. London Math. Soc., Volume 70 (2004) no. 2, pp. 369-382

  • Liang-yi Huang; Yuan Zhang Lipschitz classification of Bedford-McMullen carpets with locally uniform horizontal fibers, Topology and its Applications, Volume 350 (2024), p. 108906 | DOI:10.1016/j.topol.2024.108906
  • Ya-min Yang; Yuan Zhang Constructing bi-Lipschitz maps between Bedford-McMullen carpets via symbolic spaces, Journal of Mathematical Analysis and Applications, Volume 528 (2023) no. 1, p. 127514 | DOI:10.1016/j.jmaa.2023.127514
  • Liang-Yi Huang; Zhi-Ying Wen; Ya-Min Yang; Yun-Jie Zhu Topology automaton of self-similar sets and its applications to metrical classifications, Nonlinearity, Volume 36 (2023) no. 5, p. 2541 | DOI:10.1088/1361-6544/acc304
  • Zhen Liang; Jun Jie Miao; Huo-Jun Ruan Gap sequences and Topological properties of Bedford–McMullen sets*, Nonlinearity, Volume 35 (2022) no. 8, p. 4043 | DOI:10.1088/1361-6544/ac7703
  • Qi Jia; Chen Chen; Ying Ma; Lei Lei; Kan Jiang Conditional bi-Lipschitz equivalence of self-similar sets, Chaos, Solitons Fractals, Volume 153 (2021), p. 111479 | DOI:10.1016/j.chaos.2021.111479
  • CHEN CHEN; YING MA; LEI LEI; MOHAMMAD GAREEB; KAN JIANG RESONANCE BETWEEN SELF-SIMILAR SETS AND THEIR UNIVOQUE SETS, Fractals, Volume 29 (2021) no. 05, p. 2150111 | DOI:10.1142/s0218348x21501115
  • YUNJIE ZHU; HUI RAO LIPSCHITZ EQUIVALENCE OF SELF-SIMILAR SETS AND FINITE-STATE AUTOMATON, Fractals, Volume 29 (2021) no. 08 | DOI:10.1142/s0218348x21502716
  • Ya-min Yang; Yuan Zhang Lipschitz classification of Bedford-McMullen carpets with uniform horizontal fibers, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 2, p. 124742 | DOI:10.1016/j.jmaa.2020.124742
  • Li‐Feng Xi; Ying Xiong Algebraic criteria for Lipschitz equivalence of dust‐like self‐similar sets, Journal of the London Mathematical Society, Volume 103 (2021) no. 2, p. 760 | DOI:10.1112/jlms.12392
  • Lian Wang; Dong-Hong Xiong Lipschitz classification of self-similar sets with overlaps, Monatshefte für Mathematik, Volume 195 (2021) no. 2, p. 343 | DOI:10.1007/s00605-021-01542-8
  • Lifeng Xi Differentiable points of Sierpinski-like sponges, Advances in Mathematics, Volume 361 (2020), p. 106936 | DOI:10.1016/j.aim.2019.106936
  • Ji-hua Ma; Yan-fang Zhang Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification, Nonlinearity, Volume 33 (2020) no. 11, p. 6053 | DOI:10.1088/1361-6544/aba0c4
  • Zhen Liang; Huo-Jun Ruan Gap sequences of fractal squares, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 2, p. 1475 | DOI:10.1016/j.jmaa.2018.12.003
  • Jun Jason Luo Self‐similar sets, simple augmented trees and their Lipschitz equivalence, Journal of the London Mathematical Society, Volume 99 (2019) no. 2, p. 428 | DOI:10.1112/jlms.12181
  • Ştefan Cobzaş; Radu Miculescu; Adriana Nicolae Lipschitz Isomorphisms of Metric Spaces, Lipschitz Functions, Volume 2241 (2019), p. 335 | DOI:10.1007/978-3-030-16489-8_7
  • Jun Jason Luo On the Lipschitz equivalence of self‐affine sets, Mathematische Nachrichten, Volume 292 (2019) no. 5, p. 1032 | DOI:10.1002/mana.201800041
  • CHUNTAI LIU SELF-SIMILARITY AND LIPSCHITZ EQUIVALENCE OF UNIONS OF CANTOR SETS, Fractals, Volume 26 (2018) no. 05, p. 1850061 | DOI:10.1142/s0218348x18500615
  • Yunjie Zhu; Yamin Yang Lipschitz equivalence of self-similar sets with two-state neighbor automaton, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, p. 379 | DOI:10.1016/j.jmaa.2017.09.007
  • Jun Jason Luo; Huo‐Jun Ruan; Yi‐Lin Wang LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS, Mathematika, Volume 64 (2018) no. 3, p. 730 | DOI:10.1112/s0025579318000232
  • Ka-Sing Lau; Xiang-Yang Wang On hyperbolic graphs induced by iterated function systems, Advances in Mathematics, Volume 313 (2017), p. 357 | DOI:10.1016/j.aim.2017.04.012
  • Huo-Jun Ruan; Yang Wang Topological invariants and Lipschitz equivalence of fractal squares, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, p. 327 | DOI:10.1016/j.jmaa.2017.02.012
  • JUN JASON LUO; JING-CHENG LIU ON THE CLASSIFICATION OF FRACTAL SQUARES, Fractals, Volume 24 (2016) no. 01, p. 1650008 | DOI:10.1142/s0218348x16500080
  • Zhi-Yong Zhu; En-Mei Dong Lipschitz equivalence of fractal triangles, Journal of Mathematical Analysis and Applications, Volume 433 (2016) no. 2, p. 1157 | DOI:10.1016/j.jmaa.2015.08.015
  • ZHI-YONG ZHU LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES, Fractals, Volume 23 (2015) no. 02, p. 1550013 | DOI:10.1142/s0218348x15500139
  • Hui Rao; Yuan Zhang Higher dimensional Frobenius problem and Lipschitz equivalence of Cantor sets, Journal de Mathématiques Pures et Appliquées, Volume 104 (2015) no. 5, p. 868 | DOI:10.1016/j.matpur.2015.05.006
  • Hao Li; Qiu-Li Guo; Qin Wang; Li-Feng Xi Algorithms to test open set condition for self-similar set related to P.V. numbers, Journal of Mathematical Analysis and Applications, Volume 421 (2015) no. 1, p. 453 | DOI:10.1016/j.jmaa.2014.07.032
  • Fan Lü; Man-Li Lou; Zhi-Ying Wen; Li-Feng Xi Bilipschitz embedding of homogeneous fractals, Journal of Mathematical Analysis and Applications, Volume 432 (2015) no. 2, p. 888 | DOI:10.1016/j.jmaa.2015.07.006
  • Huo-Jun Ruan; Yang Wang; Li-Feng Xi Lipschitz equivalence of self-similar sets with touching structures, Nonlinearity, Volume 27 (2014) no. 6, p. 1299 | DOI:10.1088/0951-7715/27/6/1299
  • Jun Jason Luo; Ka-Sing Lau Lipschitz equivalence of self-similar sets and hyperbolic boundaries, Advances in Mathematics, Volume 235 (2013), p. 555 | DOI:10.1016/j.aim.2012.12.010
  • BOMING LI; WENXIA LI; JUN JIE MIAO LIPSCHITZ EQUIVALENCE OF MCMULLEN SETS, Fractals, Volume 21 (2013) no. 03n04, p. 1350022 | DOI:10.1142/s0218348x13500229
  • Qi-Rong Deng; Ka-Sing Lau On the equivalence of homogeneous iterated function systems, Nonlinearity, Volume 26 (2013) no. 10, p. 2767 | DOI:10.1088/0951-7715/26/10/2767
  • Zhixiong Wen; Zhiyong Zhu; Guotai Deng Lipschitz equivalence of a class of general Sierpinski carpets, Journal of Mathematical Analysis and Applications, Volume 385 (2012) no. 1, p. 16 | DOI:10.1016/j.jmaa.2011.06.018
  • Lifeng Xi; Ying Xiong Lipschitz equivalence of fractals generated by nested cubes, Mathematische Zeitschrift, Volume 271 (2012) no. 3-4, p. 1287 | DOI:10.1007/s00209-011-0916-5
  • GuoTai Deng; XingGang He Lipschitz equivalence of fractal sets in ℝ, Science China Mathematics, Volume 55 (2012) no. 10, p. 2095 | DOI:10.1007/s11425-012-4444-5
  • JAMIL AOUIDI; ANOUAR BEN MABROUK MULTIFRACTAL ANALYSIS OF SOME WEIGHTED QUASI-SELF-SIMILAR FUNCTIONS, International Journal of Wavelets, Multiresolution and Information Processing, Volume 09 (2011) no. 06, p. 965 | DOI:10.1142/s0219691311004407
  • Juan Deng; Zhi-ying Wen; Ying Xiong; Li-Feng Xi Bilipschitz embedding of self-similar sets, Journal d'Analyse Mathématique, Volume 114 (2011) no. 1, p. 63 | DOI:10.1007/s11854-011-0012-0
  • ZhiYong Zhu; Ying Xiong; LiFeng Xi Lipschitz equivalence of self-similar sets with triangular pattern, Science China Mathematics, Volume 54 (2011) no. 5, p. 1019 | DOI:10.1007/s11425-011-4173-1
  • Xiaohua Wang; Shengyou Wen; Changxin Zhu Quasisymmetric equivalence of self-similar sets, Journal of Mathematical Analysis and Applications, Volume 365 (2010) no. 1, p. 254 | DOI:10.1016/j.jmaa.2009.10.053
  • Li-Feng Xi Lipschitz equivalence of dust-like self-similar sets, Mathematische Zeitschrift, Volume 266 (2010) no. 3, p. 683 | DOI:10.1007/s00209-009-0593-9
  • Marta Llorente; Pertti Mattila Lipschitz equivalence of subsets of self-conformal sets, Nonlinearity, Volume 23 (2010) no. 4, p. 875 | DOI:10.1088/0951-7715/23/4/006
  • MEIFENG DAI LIPSCHITZ EQUIVALENCE OF GENERAL SIERPINSKI CARPETS, Fractals, Volume 16 (2008) no. 04, p. 379 | DOI:10.1142/s0218348x08004022
  • Hui Rao; Huo-Jun Ruan; Ya-Min Yang Gap sequence, Lipschitz equivalence and box dimension of fractal sets, Nonlinearity, Volume 21 (2008) no. 6, p. 1339 | DOI:10.1088/0951-7715/21/6/011
  • Li-feng Xi; Huo-jun Ruan Lipschitz equivalence of generalized 1,3,5-1,4,5 self-similar sets, Science in China Series A: Mathematics, Volume 50 (2007) no. 11, p. 1537 | DOI:10.1007/s11425-007-0113-5
  • Li-feng XI; Huo-jun Ruan; Qiu-li Guo Sliding of self-similar sets, Science in China Series A: Mathematics, Volume 50 (2007) no. 3, p. 351 | DOI:10.1007/s11425-007-0016-5

Cité par 44 documents. Sources : Crossref

Commentaires - Politique