Comptes Rendus
Dynamical Systems
Lipschitz equivalence of self-similar sets
[Equivalence Lipschitz d'ensembles autosimilaires]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 191-196.

In 1997 David and Semmes asked whether there exists a bilipschitz map between the two compact self-similar subset M and M of the real line defined by the relations M=(M/5)(M/5+2/5)(M/5+4/5) and M=(M/5)(M/5+3/5)(M/5+4/5). We answer this question positively.

En 1997, David et Semmes ont posé la question de savoir s'il existe une application bi-lipschitzienne entre les deux compacts linéaires M et M définis par les relations M=(M/5)(M/5+2/5)(M/5+4/5) et M=(M/5)(M/5+3/5)(M/5+4/5). Nous répondons affirmativement à cette question.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.12.016

Hui Rao 1 ; Huo-Jun Ruan 2 ; Li-Feng Xi 3

1 Department of Mathematics, Tsinghua University, Beijing, 100084, China
2 Department of Mathematics, Zhejiang University, Hangzhou, 310027, China
3 Institute of Mathematics, Zhejiang Wanli University, Ningbo, 315100, China
@article{CRMATH_2006__342_3_191_0,
     author = {Hui Rao and Huo-Jun Ruan and Li-Feng Xi},
     title = {Lipschitz equivalence of self-similar sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {191--196},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2005.12.016},
     language = {en},
}
TY  - JOUR
AU  - Hui Rao
AU  - Huo-Jun Ruan
AU  - Li-Feng Xi
TI  - Lipschitz equivalence of self-similar sets
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 191
EP  - 196
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2005.12.016
LA  - en
ID  - CRMATH_2006__342_3_191_0
ER  - 
%0 Journal Article
%A Hui Rao
%A Huo-Jun Ruan
%A Li-Feng Xi
%T Lipschitz equivalence of self-similar sets
%J Comptes Rendus. Mathématique
%D 2006
%P 191-196
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crma.2005.12.016
%G en
%F CRMATH_2006__342_3_191_0
Hui Rao; Huo-Jun Ruan; Li-Feng Xi. Lipschitz equivalence of self-similar sets. Comptes Rendus. Mathématique, Volume 342 (2006) no. 3, pp. 191-196. doi : 10.1016/j.crma.2005.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.016/

[1] D. Cooper; T. Pignataro On the shape of Cantor sets, J. Differential Geom., Volume 28 (1988), pp. 203-221

[2] G. David; S. Semmes Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Univ. Press, 1997

[3] K.J. Falconer; D.T. Marsh Classification of quasi-circles by Hausdorff dimension, Nonlinearity, Volume 2 (1989), pp. 489-493

[4] K.J. Falconer; D.T. Marsh On the Lipschitz equivalence of Cantor sets, Mathematika, Volume 39 (1992), pp. 223-233

[5] J.E. Hutchinson Fractals and self similarity, Indiana Univ. Math. J., Volume 30 (1981), pp. 713-747

[6] R.D. Mauldin; S.C. Williams Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., Volume 309 (1988), pp. 811-829

[7] H. Rao; Z.-Y. Wen A class of self-similar fractals with overlap structure, Adv. Appl. Math., Volume 20 (1998), pp. 50-72

[8] Z.-Y. Wen; L.-F. Xi Relations among Whitney sets, self-similar arcs and quasi-arcs, Israel J. Math., Volume 136 (2003), pp. 251-267

[9] L.-F. Xi Lipschitz equivalence of self-conformal sets, J. London Math. Soc., Volume 70 (2004) no. 2, pp. 369-382

  • Liang-yi Huang; Yuan Zhang Lipschitz classification of Bedford-McMullen carpets with locally uniform horizontal fibers, Topology and its Applications, Volume 350 (2024), p. 16 (Id/No 108906) | DOI:10.1016/j.topol.2024.108906 | Zbl:1551.28003
  • Yamin Yang; Yuan Zhang Constructing bi-Lipschitz maps between Bedford-McMullen carpets via symbolic spaces, Journal of Mathematical Analysis and Applications, Volume 528 (2023) no. 1, p. 17 (Id/No 127514) | DOI:10.1016/j.jmaa.2023.127514 | Zbl:7725231
  • Liang-Yi Huang; Zhi-Ying Wen; Ya-Min Yang; Yun-Jie Zhu Topology automaton of self-similar sets and its applications to metrical classifications, Nonlinearity, Volume 36 (2023) no. 5, pp. 2541-2566 | DOI:10.1088/1361-6544/acc304 | Zbl:1547.28018
  • Da-Wen Deng; Yulan Huang; Sze-Man Ngai Continuous maps that preserve Hausdorff measure, Journal of Mathematical Analysis and Applications, Volume 516 (2022) no. 1, p. 10 (Id/No 126485) | DOI:10.1016/j.jmaa.2022.126485 | Zbl:1510.28008
  • Zhen Liang; Jun Jie Miao; Huo-Jun Ruan Gap sequences and topological properties of Bedford-McMullen sets, Nonlinearity, Volume 35 (2022) no. 8, pp. 4043-4063 | DOI:10.1088/1361-6544/ac7703 | Zbl:1515.28014
  • Qi Jia; Chen Chen; Ying Ma; Lei Lei; Kan Jiang Conditional bi-Lipschitz equivalence of self-similar sets, Chaos, Solitons and Fractals, Volume 153 (2021), p. 8 (Id/No 111479) | DOI:10.1016/j.chaos.2021.111479 | Zbl:1498.28010
  • Chen Chen; Ying Ma; Lei Lei; Mohammad Gareeb; Kan Jiang Resonance between self-similar sets and their univoque sets, Fractals, Volume 29 (2021) no. 5, p. 12 (Id/No 2150111) | DOI:10.1142/s0218348x21501115 | Zbl:1490.28007
  • Yunjie Zhu; Hui Rao Lipschitz equivalence of self-similar sets and finite-state automaton, Fractals, Volume 29 (2021) no. 8, p. 9 (Id/No 2150271) | DOI:10.1142/s0218348x21502716 | Zbl:1505.28015
  • Ya-min Yang; Yuan Zhang Lipschitz classification of Bedford-McMullen carpets with uniform horizontal fibers, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 2, p. 12 (Id/No 124742) | DOI:10.1016/j.jmaa.2020.124742 | Zbl:1459.28011
  • Li-Feng Xi; Ying Xiong Algebraic criteria for Lipschitz equivalence of dust-like self-similar sets, Journal of the London Mathematical Society. Second Series, Volume 103 (2021) no. 2, pp. 760-780 | DOI:10.1112/jlms.12392 | Zbl:1471.28008
  • Lian Wang; Dong-Hong Xiong Lipschitz classification of self-similar sets with overlaps, Monatshefte für Mathematik, Volume 195 (2021) no. 2, pp. 343-352 | DOI:10.1007/s00605-021-01542-8 | Zbl:1470.28011
  • Lifeng Xi Differentiable points of Sierpinski-like sponges, Advances in Mathematics, Volume 361 (2020), p. 34 (Id/No 106936) | DOI:10.1016/j.aim.2019.106936 | Zbl:1431.28017
  • Kan Jiang; Lifeng Xi; Shengnan Xu; Jinjin Yang Isomorphism and bi-Lipschitz equivalence between the univoque sets, Discrete and Continuous Dynamical Systems, Volume 40 (2020) no. 11, pp. 6089-6114 | DOI:10.3934/dcds.2020271 | Zbl:1452.37028
  • Ji-hua Ma; Yan-fang Zhang Topological Hausdorff dimension of fractal squares and its application to Lipschitz classification, Nonlinearity, Volume 33 (2020) no. 11, pp. 6053-6071 | DOI:10.1088/1361-6544/aba0c4 | Zbl:1453.28009
  • Zhen Liang; Huo-Jun Ruan Gap sequences of fractal squares, Journal of Mathematical Analysis and Applications, Volume 472 (2019) no. 2, pp. 1475-1486 | DOI:10.1016/j.jmaa.2018.12.003 | Zbl:1411.28007
  • Jun Jason Luo Self-similar sets, simple augmented trees and their Lipschitz equivalence, Journal of the London Mathematical Society. Second Series, Volume 99 (2019) no. 2, pp. 428-446 | DOI:10.1112/jlms.12181 | Zbl:1502.28007
  • Ştefan Cobzaş; Radu Miculescu; Adriana Nicolae Lipschitz Isomorphisms of Metric Spaces, Lipschitz Functions, Volume 2241 (2019), p. 335 | DOI:10.1007/978-3-030-16489-8_7
  • Jun Jason Luo On the Lipschitz equivalence of self-affine sets, Mathematische Nachrichten, Volume 292 (2019) no. 5, pp. 1032-1042 | DOI:10.1002/mana.201800041 | Zbl:1414.05079
  • Kan Jiang; Songjing Wang; Lifeng Xi Lipschitz equivalence of self-similar sets with exact overlaps, Annales Academiae Scientiarum Fennicae. Mathematica, Volume 43 (2018) no. 2, pp. 905-912 | Zbl:1402.28007
  • Chuntai Liu Self-similarity and Lipschitz equivalence of unions of Cantor sets, Fractals, Volume 26 (2018) no. 5, p. 12 (Id/No 1850061) | DOI:10.1142/s0218348x18500615 | Zbl:1433.28017
  • Yunjie Zhu; Yamin Yang Lipschitz equivalence of self-similar sets with two-state neighbor automaton, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, pp. 379-392 | DOI:10.1016/j.jmaa.2017.09.007 | Zbl:1375.28022
  • Jun Jason Luo; Huo-Jun Ruan; Yi-Lin Wang Lipschitz equivalence of Cantor sets and irreducibility of polynomials, Mathematika, Volume 64 (2018) no. 3, pp. 730-741 | DOI:10.1112/s0025579318000232 | Zbl:1411.28008
  • Ka-Sing Lau; Xiang-Yang Wang On hyperbolic graphs induced by iterated function systems, Advances in Mathematics, Volume 313 (2017), pp. 357-378 | DOI:10.1016/j.aim.2017.04.012 | Zbl:1366.28008
  • Huo-Jun Ruan; Yang Wang Topological invariants and Lipschitz equivalence of fractal squares, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, pp. 327-344 | DOI:10.1016/j.jmaa.2017.02.012 | Zbl:1359.28009
  • JUN JASON LUO; JING-CHENG LIU ON THE CLASSIFICATION OF FRACTAL SQUARES, Fractals, Volume 24 (2016) no. 01, p. 1650008 | DOI:10.1142/s0218348x16500080
  • Zhi-Yong Zhu; En-Mei Dong Lipschitz equivalence of fractal triangles, Journal of Mathematical Analysis and Applications, Volume 433 (2016) no. 2, pp. 1157-1176 | DOI:10.1016/j.jmaa.2015.08.015 | Zbl:1323.28017
  • ZHI-YONG ZHU LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES, Fractals, Volume 23 (2015) no. 02, p. 1550013 | DOI:10.1142/s0218348x15500139
  • Hui Rao; Yuan Zhang Higher dimensional Frobenius problem and Lipschitz equivalence of Cantor sets, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 104 (2015) no. 5, pp. 868-881 | DOI:10.1016/j.matpur.2015.05.006 | Zbl:1334.54048
  • Hao Li; Qiu-Li Guo; Qin Wang; Li-Feng Xi Algorithms to test open set condition for self-similar set related to P.V. numbers, Journal of Mathematical Analysis and Applications, Volume 421 (2015) no. 1, pp. 453-473 | DOI:10.1016/j.jmaa.2014.07.032 | Zbl:1305.28022
  • Fan Lü; Man-Li Lou; Zhi-Ying Wen; Li-Feng Xi Bilipschitz embedding of homogeneous fractals, Journal of Mathematical Analysis and Applications, Volume 432 (2015) no. 2, pp. 888-917 | DOI:10.1016/j.jmaa.2015.07.006 | Zbl:1321.28020
  • Miwa Aoki; Masayo Fujimura; Masahiko Taniguchi The shape of the dust-likeness locus of self-similar sets, Journal of Fractal Geometry, Volume 1 (2014) no. 3, pp. 335-347 | DOI:10.4171/jfg/10 | Zbl:1308.28004
  • Huo-Jun Ruan; Yang Wang; Li-Feng Xi Lipschitz equivalence of self-similar sets with touching structures, Nonlinearity, Volume 27 (2014) no. 6, p. 1299 | DOI:10.1088/0951-7715/27/6/1299
  • Jun Jason Luo; Ka-Sing Lau Lipschitz equivalence of self-similar sets and hyperbolic boundaries, Advances in Mathematics, Volume 235 (2013), p. 555 | DOI:10.1016/j.aim.2012.12.010
  • Boming Li; Wenxia Li; Jun Jie Miao Lipschitz equivalence of McMullen sets, Fractals, Volume 21 (2013) no. 3-4, p. 11 (Id/No 1350022) | DOI:10.1142/s0218348x13500229 | Zbl:1290.28012
  • Qi-Rong Deng; Ka-Sing Lau On the equivalence of homogeneous iterated function systems, Nonlinearity, Volume 26 (2013) no. 10, p. 2767 | DOI:10.1088/0951-7715/26/10/2767
  • Zhixiong Wen; Zhiyong Zhu; Guotai Deng Lipschitz equivalence of a class of general Sierpinski carpets, Journal of Mathematical Analysis and Applications, Volume 385 (2012) no. 1, pp. 16-23 | DOI:10.1016/j.jmaa.2011.06.018 | Zbl:1235.28009
  • Lifeng Xi; Ying Xiong Lipschitz equivalence of fractals generated by nested cubes, Mathematische Zeitschrift, Volume 271 (2012) no. 3-4, pp. 1287-1308 | DOI:10.1007/s00209-011-0916-5 | Zbl:1312.28012
  • GuoTai Deng; XingGang He Lipschitz equivalence of fractal sets in R, Science China. Mathematics, Volume 55 (2012) no. 10, pp. 2095-2107 | DOI:10.1007/s11425-012-4444-5 | Zbl:1257.28003
  • Hui Rao; Huo-Jun Ruan; Yang Wang Lipschitz equivalence of Cantor sets and algebraic properties of contraction ratios, Transactions of the American Mathematical Society, Volume 364 (2012) no. 3, pp. 1109-1126 | DOI:10.1090/s0002-9947-2011-05327-4 | Zbl:1244.28015
  • Jamil Aouidi; Anouar Ben Mabrouk Multifractal analysis of some weighted quasi-self-similar functions, International Journal of Wavelets, Multiresolution and Information Processing, Volume 9 (2011) no. 6, pp. 965-987 | DOI:10.1142/s0219691311004407 | Zbl:1244.28006
  • Juan Deng; Zhi-Ying Wen; Ying Xiong; Li-Feng Xi Bilipschitz embedding of self-similar sets, Journal d'Analyse Mathématique, Volume 114 (2011), pp. 63-97 | DOI:10.1007/s11854-011-0012-0 | Zbl:1241.28004
  • ZhiYong Zhu; Ying Xiong; LiFeng Xi Lipschitz equivalence of self-similar sets with triangular pattern, Science China. Mathematics, Volume 54 (2011) no. 5, pp. 1019-1026 | DOI:10.1007/s11425-011-4173-1 | Zbl:1215.28010
  • Li-Feng Xi; Ying Xiong Self-similar sets with initial cubic patterns, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 1-2, pp. 15-20 | DOI:10.1016/j.crma.2009.12.006 | Zbl:1225.28008
  • Xiaohua Wang; Shengyou Wen; Changxin Zhu Quasisymmetric equivalence of self-similar sets, Journal of Mathematical Analysis and Applications, Volume 365 (2010) no. 1, pp. 254-258 | DOI:10.1016/j.jmaa.2009.10.053 | Zbl:1187.28015
  • Li-Feng Xi Lipschitz equivalence of dust-like self-similar sets, Mathematische Zeitschrift, Volume 266 (2010) no. 3, pp. 683-691 | DOI:10.1007/s00209-009-0593-9 | Zbl:1203.28008
  • Marta Llorente; Pertti Mattila Lipschitz equivalence of subsets of self-conformal sets, Nonlinearity, Volume 23 (2010) no. 4, p. 875 | DOI:10.1088/0951-7715/23/4/006
  • Meifeng Dai Lipschitz equivalence of general Sierpinski carpets, Fractals, Volume 16 (2008) no. 4, pp. 379-388 | DOI:10.1142/s0218348x08004022 | Zbl:1159.28004
  • Hui Rao; Huo-Jun Ruan; Ya-Min Yang Gap sequence, Lipschitz equivalence and box dimension of fractal sets, Nonlinearity, Volume 21 (2008) no. 6, p. 1339 | DOI:10.1088/0951-7715/21/6/011
  • Li-feng Xi; Huo-jun Ruan Lipschitz equivalence of generalized {1,3,5}{1,4,5} self-similar sets, Science in China. Series A, Volume 50 (2007) no. 11, pp. 1537-1551 | DOI:10.1007/s11425-007-0113-5 | Zbl:1132.28313
  • Li-feng Xi; Huo-jun Ruan; Qiu-li Guo Sliding of self-similar sets, Science in China. Series A, Volume 50 (2007) no. 3, pp. 351-360 | DOI:10.1007/s11425-007-0016-5 | Zbl:1122.28009

Cité par 50 documents. Sources : Crossref, zbMATH

Commentaires - Politique