[Hirzebruch classes and motivic Chern classes]
Let X be a complex algebraic variety. We define and study new theories of characteristic classes, defined on the relative Grothendieck group of complex algebraic varieties over X as introduced and studied by Looijenga and Bittner in relation to motivic integration. One of them, is a homology class version of the motivic measure and generalizes the corresponding Hirzebruch characteristic. It unifies the Chern class transformation of Schwartz and MacPherson, the Todd class transformation of Baum–Fulton–MacPherson and the L-class transformation of Cappell–Shaneson.
Étant donnée une variété algébrique complexe X, nous introduisons de nouvelles théories de classes caractéristiques, définies sur le groupe de Grothendieck relatif des variétés algébriques complexes sur X, construit et étudié par Looijenga et Bittner dans le cadre de l'intégration motivique. L'une d'entre elles est une version homologique de la mesure motivique et généralise la caractéristique d'Hirzebruch correspondante. Elle unifie la transformation de Chern de Schwartz–MacPherson, la transformation de Todd de Baum–Fulton–MacPherson et la transformation de L-classe de Cappell–Shaneson.
Accepted:
Published online:
Jean-Paul Brasselet 1; Jörg Schürmann 2; Shoji Yokura 3
@article{CRMATH_2006__342_5_325_0, author = {Jean-Paul Brasselet and J\"org Sch\"urmann and Shoji Yokura}, title = {Classes de {Hirzebruch} et classes de {Chern} motiviques}, journal = {Comptes Rendus. Math\'ematique}, pages = {325--328}, publisher = {Elsevier}, volume = {342}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2005.12.022}, language = {fr}, }
Jean-Paul Brasselet; Jörg Schürmann; Shoji Yokura. Classes de Hirzebruch et classes de Chern motiviques. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 325-328. doi : 10.1016/j.crma.2005.12.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.022/
[1] Riemann–Roch for singular varieties, Publ. Math. IHES, Volume 45 (1975), pp. 101-145
[2] The universal Euler–Poincaré characteristic for varieties of characteristic zero, Comp. Math., Volume 140 (2004), pp. 1011-1032
[3] Hirzebruch classes and motivic Chern classes for singular spaces (Preprint, arXiv) | arXiv
[4] Stratifiable maps and topological invariants, J. Amer. Math. Soc., Volume 4 (1991), pp. 521-551
[5] Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France, Volume 109 (1981), pp. 41-81
[6] Riemann–Roch Algebra, Springer, New York, 1985
[7] Topological Methods in Algebraic Geometry, Springer, New York, 1966
[8] Chern classes for singular algebraic varieties, Ann. of Math., Volume 100 (1974), pp. 423-432
[9] On Cappell–Shaneson's homology L-class of singular algebraic varieties, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 1005-1012
[10] A generalized Grothendieck–Riemann–Roch theorem for Hirzebruch's -characteristic and -characteristic, Publ. RIMS, Volume 30 (1994), pp. 603-610
Cited by Sources:
Comments - Policy