We give an upper bound on the growth rate of the Schrödinger group on Zhidkov spaces. In dimension 1, we prove that this bound is sharp.
On donne une borne supérieure au taux de croissance du groupe de Schrödinger sur les espaces de Zhidkov. En dimension 1, on montre que cette borne est optimale.
Accepted:
Published online:
Clément Gallo 1
@article{CRMATH_2006__342_5_319_0, author = {Cl\'ement Gallo}, title = {Growth rate of the {Schr\"odinger} group on {Zhidkov} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {319--323}, publisher = {Elsevier}, volume = {342}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2005.12.024}, language = {en}, }
Clément Gallo. Growth rate of the Schrödinger group on Zhidkov spaces. Comptes Rendus. Mathématique, Volume 342 (2006) no. 5, pp. 319-323. doi : 10.1016/j.crma.2005.12.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.12.024/
[1] Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Théor., Volume 70 (1999) no. 2, pp. 147-238
[2] Instability of stationary bubbles, SIAM J. Math. Anal., Volume 26 (1995) no. 3, pp. 566-582
[3] Travelling waves for the Gross–Pitaevskii equation in dimension larger than two, Nonlinear Anal., Volume 58 (2004), pp. 175-204
[4] Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Volume 9 (2004), pp. 509-538
[5] C. Gallo, Propriétés qualitatives d'ondes solitaires solutions d'équations aux dérivées partielles non linéaires dispersives, Thèse de l'université Paris-Sud, 2005
[6] Dark solitons: physics and applications, Phys. Rep., Volume 298 (1998), pp. 81-197
[7] Existence of non-stationary bubbles in higher dimensions, J. Math. Pures Appl., Volume 81 (2002), pp. 1207-1235
[8] Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer-Verlag, 2001
Cited by Sources:
Comments - Policy