Comptes Rendus
Differential Geometry
A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in Cn
Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 427-430.

Let (M,g) be a simply connected complete Kähler manifold with nonpositive sectional curvature. Assume that g has constant negative holomorphic sectional curvature outside a compact set. We prove that M is then biholomorphic to the unit ball in Cn, where dimCM=n.

Soit (M,g) une variété kählérienne complète et simplement connexe à courbure sectionnelle non positive. Supposons que g ait courbure sectionnelle holomorphe constante et négative en delors d'un compact. On démontre que M est biholomorphe à une boule dans Cn, où dimCM=n.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.01.005

Harish Seshadri 1; Kaushal Verma 1

1 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
@article{CRMATH_2006__342_6_427_0,
     author = {Harish Seshadri and Kaushal Verma},
     title = {A class of nonpositively curved {K\"ahler} manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {427--430},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.005},
     language = {en},
}
TY  - JOUR
AU  - Harish Seshadri
AU  - Kaushal Verma
TI  - A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 427
EP  - 430
VL  - 342
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.005
LA  - en
ID  - CRMATH_2006__342_6_427_0
ER  - 
%0 Journal Article
%A Harish Seshadri
%A Kaushal Verma
%T A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$
%J Comptes Rendus. Mathématique
%D 2006
%P 427-430
%V 342
%N 6
%I Elsevier
%R 10.1016/j.crma.2006.01.005
%G en
%F CRMATH_2006__342_6_427_0
Harish Seshadri; Kaushal Verma. A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 427-430. doi : 10.1016/j.crma.2006.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.005/

[1] W. Ballmann; M. Gromov; V. Schroeder Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985

[2] J. Bland On the existence of bounded holomorphic functions on complete Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 555-566

[3] D. Burns; S. Shnider Spherical hypersurfaces in complex manifolds, Invent. Math., Volume 33 (1976) no. 3, pp. 223-246

[4] J. Cheeger; D. Ebin Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9, North-Holland Publishing Co., New York, 1975

[5] R.E. Greene; S.G. Krantz Deformation of complex structures, estimates for the ¯ equation, and stability of the Bergman kernel, Adv. Math., Volume 43 (1982) no. 1, pp. 1-86

[6] R.E. Greene; H. Wu Gap theorems for noncompact Riemannian manifolds, Duke Math. J., Volume 49 (1982) no. 3, pp. 731-756

[7] Y.T. Siu; S.-T. Yau Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2), Volume 105 (1977) no. 2, pp. 225-264

[8] H. Wu Negatively curved Kähler manifolds, Notices Amer. Math. Soc., Volume 14 (1967), p. 515

Cited by Sources:

Comments - Policy