Let be a simply connected complete Kähler manifold with nonpositive sectional curvature. Assume that g has constant negative holomorphic sectional curvature outside a compact set. We prove that M is then biholomorphic to the unit ball in , where .
Soit une variété kählérienne complète et simplement connexe à courbure sectionnelle non positive. Supposons que g ait courbure sectionnelle holomorphe constante et négative en delors d'un compact. On démontre que M est biholomorphe à une boule dans , où .
Accepted:
Published online:
Harish Seshadri 1; Kaushal Verma 1
@article{CRMATH_2006__342_6_427_0,
author = {Harish Seshadri and Kaushal Verma},
title = {A class of nonpositively curved {K\"ahler} manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {427--430},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {6},
doi = {10.1016/j.crma.2006.01.005},
language = {en},
}
TY - JOUR
AU - Harish Seshadri
AU - Kaushal Verma
TI - A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$
JO - Comptes Rendus. Mathématique
PY - 2006
SP - 427
EP - 430
VL - 342
IS - 6
PB - Elsevier
DO - 10.1016/j.crma.2006.01.005
LA - en
ID - CRMATH_2006__342_6_427_0
ER -
Harish Seshadri; Kaushal Verma. A class of nonpositively curved Kähler manifolds biholomorphic to the unit ball in $ {\mathbb{C}}^{n}$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 427-430. doi: 10.1016/j.crma.2006.01.005
[1] Manifolds of Nonpositive Curvature, Progr. Math., vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985
[2] On the existence of bounded holomorphic functions on complete Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 555-566
[3] Spherical hypersurfaces in complex manifolds, Invent. Math., Volume 33 (1976) no. 3, pp. 223-246
[4] Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9, North-Holland Publishing Co., New York, 1975
[5] Deformation of complex structures, estimates for the equation, and stability of the Bergman kernel, Adv. Math., Volume 43 (1982) no. 1, pp. 1-86
[6] Gap theorems for noncompact Riemannian manifolds, Duke Math. J., Volume 49 (1982) no. 3, pp. 731-756
[7] Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2), Volume 105 (1977) no. 2, pp. 225-264
[8] Negatively curved Kähler manifolds, Notices Amer. Math. Soc., Volume 14 (1967), p. 515
Cited by Sources:
Comments - Policy
