Comptes Rendus
Équations aux dérivées partielles
Symétrie des grandes solutions d'équations elliptiques semi linéaires
[Symmetry of large solutions of semilinear elliptic equations]
Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 483-487.

Let g be a locally Lipschitz continuous function defined on R. We assume that g satisfies the Keller–Osserman condition and there exists a positive real number a such that g is convex on [a,). Then any solution u of Δu+g(u)=0 in a ball B of RN, N2, which tends to infinity on ∂B, is spherically symmetric.

Soit g une fonction localement lipschitzienne de la variable réelle. On suppose que g vérifie la condition de Keller et Osserman et qu'il existe un réel a>0 tel que g est convexe sur [a,+[. Alors toute solution u de Δu+g(u)=0 dans une boule B de RN, N2, qui tend vers l'infini au bord de B, est une fonction radiale.

Received:
Published online:
DOI: 10.1016/j.crma.2006.01.020

Alessio Porretta 1; Laurent Véron 2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italie
2 Laboratoire de mathématiques et physique théorique, CNRS UMR 6083, faculté des sciences, 37200 Tours, France
@article{CRMATH_2006__342_7_483_0,
     author = {Alessio Porretta and Laurent V\'eron},
     title = {Sym\'etrie des grandes solutions d'\'equations elliptiques semi lin\'eaires},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {483--487},
     publisher = {Elsevier},
     volume = {342},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.020},
     language = {fr},
}
TY  - JOUR
AU  - Alessio Porretta
AU  - Laurent Véron
TI  - Symétrie des grandes solutions d'équations elliptiques semi linéaires
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 483
EP  - 487
VL  - 342
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.020
LA  - fr
ID  - CRMATH_2006__342_7_483_0
ER  - 
%0 Journal Article
%A Alessio Porretta
%A Laurent Véron
%T Symétrie des grandes solutions d'équations elliptiques semi linéaires
%J Comptes Rendus. Mathématique
%D 2006
%P 483-487
%V 342
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.01.020
%G fr
%F CRMATH_2006__342_7_483_0
Alessio Porretta; Laurent Véron. Symétrie des grandes solutions d'équations elliptiques semi linéaires. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 483-487. doi : 10.1016/j.crma.2006.01.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.020/

[1] A. Aftalion; M. del Pino; R. Letelier Multiple boundary blow-up solutions for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003) no. 2, pp. 225-235

[2] Y. Du; Z. Guo Uniqueness and layer analysis for boundary blow-up solutions, J. Math. Pures Appl., Volume 83 (2004) no. 6, pp. 739-763

[3] B. Gidas; W.M. Ni; L. Nirenberg Symmetry and related properties via the maximum principle, Comm. Math. Phys., Volume 68 (1979), pp. 209-243

[4] J.B. Keller On solutions of Δu=f(u), Comm. Pure Appl. Math., Volume 10 (1957), pp. 503-510

[5] M. Marcus; L. Veron Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274

[6] M. Marcus; L. Véron Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evolution Equations, Volume 3 (2003), pp. 637-652

[7] P.J. McKenna; W. Reichel; W. Walter Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Anal., Volume 28 (1997) no. 7, pp. 1213-1225

[8] R. Osserman On the inequality Δuf(u), Pacific J. Math., Volume 7 (1957), pp. 1641-1647

[9] S.I. Pohožaev The boundary value problem for equation ΔU=U2, Dokl. Akad. Nauk SSSR, Volume 138 (1961), pp. 305-308 (in Russian)

Cited by Sources:

Comments - Policy