We prove a Kazdan–Warner type identity involving the curvature and a conformal Killing vector field on a compact manifold. Our method also works to provide a unified proof for the necessary conditions in the Christoffel–Minkowski problem.
Nous prouvons une identité de type Kazdan–Warner reliant la -courbure et un champ de vecteurs conforme sur une variété compacte. Notre méthode permet aussi de fournir une preuve unifiée pour les conditions nécessaires dans le problème de Christoffel–Minkowski.
Published online:
Zheng-Chao Han 1
@article{CRMATH_2006__342_7_475_0, author = {Zheng-Chao Han}, title = {A {Kazdan{\textendash}Warner} type identity for the $ {\sigma }_{k}$ curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {475--478}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.023}, language = {en}, }
Zheng-Chao Han. A Kazdan–Warner type identity for the $ {\sigma }_{k}$ curvature. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 475-478. doi : 10.1016/j.crma.2006.01.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.023/
[1] Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique, Peñíscola, 1985 (Lecture Notes in Math.), Volume vol. 1209, Springer, Berlin (1986), pp. 100-108
[2] Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc., Volume 301 (1987) no. 2, pp. 723-736
[3] A variational characterization for , Calc. Var. PDE, Volume 20 (2004) no. 4, pp. 399-402
[4] Conformal invariants and partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 42 (2005) no. 3, pp. 365-393 (Colloquium Lecture Notes, AMS, Phoenix 2004)
[5] The Inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., Volume LVI (August 2003) no. 8, pp. 1135-1150 (Special issue dedicated to the memory of Jurgen K. Moser)
[6] S.-Y.A. Chang, Z.-C. Han, P. Yang, A priori estimates for solutions of the prescribed curvature equation on , in preparation
[7] Convex hypersurfaces of prescribed curvatures, Ann. of Math., Volume 156 (2002), pp. 655-673
[8] P. Guan, C.S. Lin, G. Wang, Schouten tensor and some topological properties, Comm. Anal. Geom., in press
[9] A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geometry, Volume 63 (2003) no. 1, pp. 131-154
[10] Prescribing Gaussian curvature on , Duke Math. J., Volume 61 (1990), pp. 679-703
[11] Curvature functions on compact 2-manifolds, Ann. of Math., Volume 99 (1974), pp. 14-47
[12] Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry, Volume 10 (1975), pp. 113-134
[13] Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., Volume 135 (1999) no. 2, pp. 233-272
[14] Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de Lichnerowicz), Acad. Roy. Belg., Cl. Sci. Mémoire XXXIX, Volume 5 (1971)
[15] YanYan Li, On some conformally invariant fully nonlinear equations, in: Proceedings of the International Congress of Mathematicians, vol. 3, Beijing, 2002, pp. 177–184
[16] The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971), pp. 247-258
[17] Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977) no. 3, pp. 459-472
[18] The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math., Volume XLI (1988), pp. 317-392
[19] Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., Volume 101 (2000) no. 2, pp. 283-316
Cited by Sources:
Comments - Policy