Comptes Rendus
Partial Differential Equations
A Kazdan–Warner type identity for the σk curvature
Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 475-478.

We prove a Kazdan–Warner type identity involving the σk curvature and a conformal Killing vector field on a compact manifold. Our method also works to provide a unified proof for the necessary conditions in the Christoffel–Minkowski problem.

Nous prouvons une identité de type Kazdan–Warner reliant la σk-courbure et un champ de vecteurs conforme sur une variété compacte. Notre méthode permet aussi de fournir une preuve unifiée pour les conditions nécessaires dans le problème de Christoffel–Minkowski.

Received:
Published online:
DOI: 10.1016/j.crma.2006.01.023

Zheng-Chao Han 1

1 Department of Mathematics, Rutgers University, 110, Frelinghuysen Road, Piscataway, NJ 08854, USA
@article{CRMATH_2006__342_7_475_0,
     author = {Zheng-Chao Han},
     title = {A {Kazdan{\textendash}Warner} type identity for the $ {\sigma }_{k}$ curvature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--478},
     publisher = {Elsevier},
     volume = {342},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.023},
     language = {en},
}
TY  - JOUR
AU  - Zheng-Chao Han
TI  - A Kazdan–Warner type identity for the $ {\sigma }_{k}$ curvature
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 475
EP  - 478
VL  - 342
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.023
LA  - en
ID  - CRMATH_2006__342_7_475_0
ER  - 
%0 Journal Article
%A Zheng-Chao Han
%T A Kazdan–Warner type identity for the $ {\sigma }_{k}$ curvature
%J Comptes Rendus. Mathématique
%D 2006
%P 475-478
%V 342
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.01.023
%G en
%F CRMATH_2006__342_7_475_0
Zheng-Chao Han. A Kazdan–Warner type identity for the $ {\sigma }_{k}$ curvature. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 475-478. doi : 10.1016/j.crma.2006.01.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.023/

[1] J.P. Bourguignon Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique, Peñíscola, 1985 (Lecture Notes in Math.), Volume vol. 1209, Springer, Berlin (1986), pp. 100-108

[2] J.P. Bourguignon; J.P. Ezin Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc., Volume 301 (1987) no. 2, pp. 723-736

[3] S. Brendle; J. Viaclovsky A variational characterization for σn/2, Calc. Var. PDE, Volume 20 (2004) no. 4, pp. 399-402

[4] S.-Y. Chang Conformal invariants and partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 42 (2005) no. 3, pp. 365-393 (Colloquium Lecture Notes, AMS, Phoenix 2004)

[5] S.-Y. Chang; P. Yang The Inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math., Volume LVI (August 2003) no. 8, pp. 1135-1150 (Special issue dedicated to the memory of Jurgen K. Moser)

[6] S.-Y.A. Chang, Z.-C. Han, P. Yang, A priori estimates for solutions of the prescribed σ2 curvature equation on S4, in preparation

[7] B. Guan; P. Guan Convex hypersurfaces of prescribed curvatures, Ann. of Math., Volume 156 (2002), pp. 655-673

[8] P. Guan, C.S. Lin, G. Wang, Schouten tensor and some topological properties, Comm. Anal. Geom., in press

[9] M. Gursky; J. Viaclovsky A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geometry, Volume 63 (2003) no. 1, pp. 131-154

[10] Z.-C. Han Prescribing Gaussian curvature on S2, Duke Math. J., Volume 61 (1990), pp. 679-703

[11] J.L. Kazdan; F. Warner Curvature functions on compact 2-manifolds, Ann. of Math., Volume 99 (1974), pp. 14-47

[12] J.L. Kazdan; F. Warner Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry, Volume 10 (1975), pp. 113-134

[13] N. Korevaar; R. Mazzeo; F. Pacard; R. Schoen Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., Volume 135 (1999) no. 2, pp. 233-272

[14] J. Lelong-Ferrand Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de Lichnerowicz), Acad. Roy. Belg., Cl. Sci. Mémoire XXXIX, Volume 5 (1971)

[15] YanYan Li, On some conformally invariant fully nonlinear equations, in: Proceedings of the International Congress of Mathematicians, vol. 3, Beijing, 2002, pp. 177–184

[16] M. Obata The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Volume 6 (1971), pp. 247-258

[17] R. Reilly Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977) no. 3, pp. 459-472

[18] R. Schoen The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math., Volume XLI (1988), pp. 317-392

[19] J. Viaclovsky Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., Volume 101 (2000) no. 2, pp. 283-316

Cited by Sources:

Comments - Policy