We solve Maharam's problem [D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947) 154–167. [3]], also known as the Control Measure Problem. We construct a non-zero exhaustive submeasure on the algebra of clopen sets of the Cantor set that is not absolutely continuous with respect to a measure.
Nous construisons une sous-mesure exhaustive non nulle sur l'algèbre des ouverts-fermés de l'ensemble de Cantor qui n'est absolument continue par rapport à aucune mesure. Ceci résout un problème posé par D. Maharam [D. Maharam, An algebraic characterization of measure algebras, Ann. Math. 48 (1947) 154–167. [3]], en 1947, aussi connu sous le nom de problème des mesures de contrôle.
Accepted:
Published online:
Michel Talagrand 1
@article{CRMATH_2006__342_7_501_0, author = {Michel Talagrand}, title = {Maharam's problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {501--503}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.026}, language = {en}, }
Michel Talagrand. Maharam's problem. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 501-503. doi : 10.1016/j.crma.2006.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.026/
[1] Example of ɛ-exhaustive pathological measures, Fund. Math., Volume 181 (2004), pp. 257-272
[2] Measure Theory, Vol. 3: Measure Algebras, Torres Fremlin, 2004
[3] An algebraic characterization of measure algebras, Ann. Math., Volume 48 (1947), pp. 154-167
[4] J.W. Roberts, Maharam's problem, in: Kranz, Labuda (Eds.), Procedings of the Orlicz Memorial Conference, 1991, unpublished
Cited by Sources:
Comments - Policy