[Sur une équation de Schrödinger non-linéaire avec un effet localisant]
Nous considérons l'équation de Schrödinger non-linéaire associée à un potentiel singulier de la forme
We consider the nonlinear Schrödinger equation associated to a singular potential of the form
Publié le :
Pascal Bégout 1 ; Jesús Ildefonso Díaz 2
@article{CRMATH_2006__342_7_459_0, author = {Pascal B\'egout and Jes\'us Ildefonso D{\'\i}az}, title = {On a nonlinear {Schr\"odinger} equation with a localizing effect}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--463}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.027}, language = {en}, }
Pascal Bégout; Jesús Ildefonso Díaz. On a nonlinear Schrödinger equation with a localizing effect. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 459-463. doi : 10.1016/j.crma.2006.01.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.027/
[1] Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem, J. Math. Fluid Mech., Volume 6 (2004), pp. 439-461
[2] Energy Methods for Free Boundary Problems, Birkhäuser Boston Inc., Boston, MA, 2002
[3] P. Bégout, J.I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations, in press
[4] P. Bégout, J.I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, in press
[5] Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., Volume 58 (1979), pp. 137-151
[6] Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003
[7] Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., Volume 41 (1993), pp. 151-173
[8] Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularizations, Physica D, Volume 138 (2000), pp. 334-343
[9] Schrödinger operators with singular complex potentials as generators: existence and stability, Semigroup Forum, Volume 60 (2000), pp. 337-343
[10] Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit, Chaos, Volume 15 (2005), pp. 1-18
[11] The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999
[12] Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., vol. 75, Longman Scientific & Technical, Harlow, 1987
- Multiple solutions with compact support for a quasilinear Schrödinger equation with sign-changing potentials, Complex Variables and Elliptic Equations, Volume 67 (2022) no. 7, pp. 1782-1793 | DOI:10.1080/17476933.2021.1900139 | Zbl:1492.35131
- Complex Ginzburg-Landau equations with a delayed nonlocal perturbation, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 40 | DOI:10.58997/ejde.2020.40
- Complex Ginzburg-Landau equations with a delayed nonlocal perturbation, Electronic Journal of Differential Equations (EJDE), Volume 2020 (2020), p. 18 (Id/No 40) | Zbl:1441.35223
- Qualitative properties and support compactness of solutions for quasilinear Schrödinger equation with sign changing potentials, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 198 (2020), p. 26 (Id/No 111843) | DOI:10.1016/j.na.2020.111843 | Zbl:1440.35174
- Bound state solutions of sublinear Schrödinger equations with lack of compactness, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 113 (2019) no. 2, pp. 1191-1210 | DOI:10.1007/s13398-018-0541-9 | Zbl:1429.35079
- On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via singular potentials: the multi-dimensional case, S
MA Journal, Volume 74 (2017) no. 3, pp. 255-278 | DOI:10.1007/s40324-017-0115-3 | Zbl:1390.35298 - A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity, Discrete and Continuous Dynamical Systems, Volume 34 (2014) no. 9, pp. 3371-3382 | DOI:10.3934/dcds.2014.34.3371 | Zbl:1305.35022
- Complex Ginzburg-Landau equation with absorption: existence, uniqueness and localization properties, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 2, pp. 211-223 | DOI:10.1007/s00021-013-0147-0 | Zbl:1291.35205
- Localizing estimates of the support of solutions of some nonlinear Schrödinger equations – the stationary case, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 29 (2012) no. 1, pp. 35-58 | DOI:10.1016/j.anihpc.2011.09.001 | Zbl:1241.35185
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier