[Sur une équation de Schrödinger non-linéaire avec un effet localisant]
Nous considérons l'équation de Schrödinger non-linéaire associée à un potentiel singulier de la forme , avec , sur un domaine éventuellement non borné. Nous employons des méthodes d'énergie appropriées pour montrer que si et si les données (initiale et source) ont un support compact alors toute solution doit également avoir un support compact pour tout . Cette propriété contraste avec le comportement des solutions associées aux potentiels réguliers . Des résultats similaires sont également établis pour le problème stationnaire associé et pour les solutions auto-similaires sur l'espace entier et le potentiel . L'existence des solutions est obtenue par des méthodes de compacité sous certaines conditions.
We consider the nonlinear Schrödinger equation associated to a singular potential of the form , for some , on a possible unbounded domain. We use some suitable energy methods to prove that if and if the initial and right hand side data have compact support then any possible solution must also have a compact support for any . This property contrasts with the behavior of solutions associated to regular potentials . Related results are proved also for the associated stationary problem and for self-similar solution on the whole space and potential . The existence of solutions is obtained by some compactness methods under additional conditions.
Publié le :
Pascal Bégout 1 ; Jesús Ildefonso Díaz 2
@article{CRMATH_2006__342_7_459_0, author = {Pascal B\'egout and Jes\'us Ildefonso D{\'\i}az}, title = {On a nonlinear {Schr\"odinger} equation with a localizing effect}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--463}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.027}, language = {en}, }
Pascal Bégout; Jesús Ildefonso Díaz. On a nonlinear Schrödinger equation with a localizing effect. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 459-463. doi : 10.1016/j.crma.2006.01.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.027/
[1] Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem, J. Math. Fluid Mech., Volume 6 (2004), pp. 439-461
[2] Energy Methods for Free Boundary Problems, Birkhäuser Boston Inc., Boston, MA, 2002
[3] P. Bégout, J.I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations, in press
[4] P. Bégout, J.I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, in press
[5] Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., Volume 58 (1979), pp. 137-151
[6] Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003
[7] Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., Volume 41 (1993), pp. 151-173
[8] Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularizations, Physica D, Volume 138 (2000), pp. 334-343
[9] Schrödinger operators with singular complex potentials as generators: existence and stability, Semigroup Forum, Volume 60 (2000), pp. 337-343
[10] Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit, Chaos, Volume 15 (2005), pp. 1-18
[11] The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999
[12] Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., vol. 75, Longman Scientific & Technical, Harlow, 1987
Cité par Sources :
Commentaires - Politique