[Sur une équation de Schrödinger non-linéaire avec un effet localisant]
We consider the nonlinear Schrödinger equation associated to a singular potential of the form
Nous considérons l'équation de Schrödinger non-linéaire associée à un potentiel singulier de la forme
Publié le :
Pascal Bégout 1 ; Jesús Ildefonso Díaz 2
@article{CRMATH_2006__342_7_459_0, author = {Pascal B\'egout and Jes\'us Ildefonso D{\'\i}az}, title = {On a nonlinear {Schr\"odinger} equation with a localizing effect}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--463}, publisher = {Elsevier}, volume = {342}, number = {7}, year = {2006}, doi = {10.1016/j.crma.2006.01.027}, language = {en}, }
Pascal Bégout; Jesús Ildefonso Díaz. On a nonlinear Schrödinger equation with a localizing effect. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 459-463. doi : 10.1016/j.crma.2006.01.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.027/
[1] Stopping a viscous fluid by a feedback dissipative field. I. The stationary Stokes problem, J. Math. Fluid Mech., Volume 6 (2004), pp. 439-461
[2] Energy Methods for Free Boundary Problems, Birkhäuser Boston Inc., Boston, MA, 2002
[3] P. Bégout, J.I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations, in press
[4] P. Bégout, J.I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations, in press
[5] Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., Volume 58 (1979), pp. 137-151
[6] Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003
[7] Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., Volume 41 (1993), pp. 151-173
[8] Dissipation at singularities of the nonlinear Schrödinger equation through limits of regularizations, Physica D, Volume 138 (2000), pp. 334-343
[9] Schrödinger operators with singular complex potentials as generators: existence and stability, Semigroup Forum, Volume 60 (2000), pp. 337-343
[10] Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit, Chaos, Volume 15 (2005), pp. 1-18
[11] The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999
[12] Compactness Methods for Nonlinear Evolutions, Pitman Monogr. Surveys Pure Appl. Math., vol. 75, Longman Scientific & Technical, Harlow, 1987
Cité par Sources :
Commentaires - Politique