[Sur le confinement d'un fluide visqueux par le biais d'un champ extérieur avec mémoire]
Dans ce travail nous considérons un écoulement plan stationaire incompressible d'un fluide visqueux situé dans un milieu semi-infini régi par le système de Stokes standard. Nous montrons comment ce fluide peut être arrêté à une distance finie de l'entrée du milieu, utilisant une source avec mémoire dépendant d'une manière sous-linéaire du champ de vitesses. Cet effet de localisation est atteint en réduisant le problème à un problème non linéaire du type biharmonique, où la localisation des solutions est obtenue par l'application d'une méthode d'énergie dans l'esprit de la monographie de S.N. Antontsev, J.I. Dı́az and S.I. Shmarev (Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002). En outre, du fait que la présence de terms non linéaires definis par la source est non fréquente dans la littérature de la mécanique des fluides, nous donnons aussi des résultats sur l'existence et l'unicité des solutions faibles de ce problème.
In this work we consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the standard Stokes system. We show how this fluid can be stopped at a finite distance from the entrance of the semi-infinite strip by means of a feedback source depending in a sublinear way on the velocity field. This localization effect is proved by reducing the problem to a non-linear biharmonic type one for which the localization of solutions is obtained through the application of an energy method, in the spirit of the monograph by S.N. Antontsev, J.I. Díaz and S.I. Shmarev (Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002). Since the presence of the non-linear terms defined by the source is not standard in fluid mechanics literature, we give also some results about the existence and uniqueness of weak solutions for this problem.
Accepté le :
Publié le :
Mots-clés : mécanique des fluides numérique, systéme de Stokes, champ avec mémoire dissipatif, equations non-linèaires d'ordres superieures, méthode d'énergie, effet de localisation
S.N. Antontsev 1 ; J.I. Dı́az 2 ; H.B. de Oliveira 3
@article{CRMECA_2002__330_12_797_0, author = {S.N. Antontsev and J.I. D{\i}́az and H.B. de~Oliveira}, title = {On the confinement of a viscous fluid by means of a feedback external field}, journal = {Comptes Rendus. M\'ecanique}, pages = {797--802}, publisher = {Elsevier}, volume = {330}, number = {12}, year = {2002}, doi = {10.1016/S1631-0721(02)01536-X}, language = {en}, }
TY - JOUR AU - S.N. Antontsev AU - J.I. Dı́az AU - H.B. de Oliveira TI - On the confinement of a viscous fluid by means of a feedback external field JO - Comptes Rendus. Mécanique PY - 2002 SP - 797 EP - 802 VL - 330 IS - 12 PB - Elsevier DO - 10.1016/S1631-0721(02)01536-X LA - en ID - CRMECA_2002__330_12_797_0 ER -
S.N. Antontsev; J.I. Dı́az; H.B. de Oliveira. On the confinement of a viscous fluid by means of a feedback external field. Comptes Rendus. Mécanique, Volume 330 (2002) no. 12, pp. 797-802. doi : 10.1016/S1631-0721(02)01536-X. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01536-X/
[1] Energy Methods for Free Boundary Problems, Applications to Non-Linear PDEs and Fluid Mechanics, Birkhäuser, Boston, 2002
[2] S.N. Antontsev, J.I. Díaz, H.B. de Oliveira, Stopping a viscous fluid by a feedback dissipative external field: I. The stationary Stokes problem, to appear
[3] An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Linearised Steady Problems, Springer, New York, 1994
[4] Elliptic and parabolic semilinear problems without conditions at infinity, Arch. Rational Mech. Anal., Volume 106 (1989), pp. 217-241
[5] Compactness Methods for Non-Linear Evolutions, Pitman, London, 1987
[6] Strongly non-linear elliptic boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV), Volume 5 (1978), pp. 587-603
[7] Some properties of higher order Sobolev spaces, J. Math. Pures Appl., Volume 61 (1982), pp. 245-259
[8] On the localization of solutions of non-linear degenerate elliptic and parabolic equations, Dokl. Akad. Nauk SSSR, Volume 260 (1981) no. 6, pp. 1289-1293 (in Russian) English translation in Dokl. Math., 24, 2, 1981, pp. 420-424
[9] Compacité du support des solutions d'équations quasi linéaires elliptiques ou paraboliques, C. R. Acad. Sci. Paris, Série I, Volume 297 (1983) no. 3, pp. 149-152
[10] Local vanishing properties of solutions of elliptic and parabolic quasilinear equations, Trans. Amer. Math. Soc., Volume 290 (1985) no. 2, pp. 787-814
[11] Compactness of the support for some non-linear elliptic problems of arbitrary order in dimension n, Comm. Partial Differential Equations, Volume 9 (1984) no. 3, pp. 271-312
[12] Qualitative properties for some non-linear higher order degenerate parabolic equations, Houston J. Math., Volume 14 (1988), pp. 319-352
[13] J.I. Díaz, On the formation of the free boundary for the obstacle and Stefan problems via an energy method, in: L. Ferragut, A. Santos (Eds.), Actas XVII CEDYA/VII CMA (CD-Rom), S.P. Universidad Salamanca, 2001
Cité par Sources :
Commentaires - Politique